WESTERN

AUSTRALIA

Formal Methods for
Software Assurance

CITS5501/CITS3501 - Software Testing and Quality Assurance

Guest lecturer: Matthew Daggitt 2025 - Semester 2

<

e # AUSTRALIA

Motivation

Motivation

* Software engineers are
objectively bad at their
jobs compared to other
fields.

* Pretty much every piece
of non-trivial software has

bugs in.

 How bad can bugs be?

www.xkcd.com/2030

THE UNIVERSITY OF
@ WESTERN
*? AUSTRALIA
1 ASKING AIRCRAFT DESIGNERS |y |ASKING BUILDING ENGINEERS | A ASKING SOFTWARE
ABOUT AIRPLANE SAFETY: ABOUT ELEVATOR SAFETY: ENGINEERS ABOUT
NOTHING IS EVER FOOLPROOE | ELEVATORS ARE. PROTECTED By | LCOMPUTERIZED VOTING:
BUT MODERN AIRLINERS ARE. | MULTIPLE TRIED-AND-TESTED
INCREDIBLY RESILIENT. FLYING I6 | FAILSAFE MECHANISMS, THEYRE | THATS TERRIFYING.
THE SAFEST WAY O TRAVEL. | NERRLY INCAPRBLE OF FALLING. (
VAT, REALLY? THEY SAY THEY'VE FIXED IT WITH

DONT TRUST VOTING SOFTWARE. AND DONT
LISTEN T0 ANYONE WHO TELLS YOU ITS SAFE.

WHY?

I DONT QUITE KNOW HOW To PUT THIS, BUT
OUR ENTIRE FIELD IS BAD AT WHAT WE DO,
AND IF YOU RELY ON US, EVERYONE WILL DIE.

SOMETHING CALLED "BLOCKCHAIN'
AAARALL

WHATEVER THEY' S0LD
YOU, DONT TOUCH IT

BURYITIMTHEDESERT

UEPRGLDU'Eﬁ

P

Example 1: Knight Capital spending spree @ WESTERN

* In 2012, one of the biggest trading
companies in the world pushed an
update to their automated trading

g algorithm.

Kn Ig ht « Abug resulted in effectively an

infinite loop of buying stocks.

« Lost $400 million in 28 minutes and
the company went bankrupt.

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

=y THE UNIVERSITY OF

: : 2N WESTERN
Example 2: Intel Pentium processor &5 A SRALIA

* In 1994, Intel released a processor
which didn't always divide numbers
correctly.

« Recall of the chips cost $500 million
USD (in 1994 money!).

https://en.wikipedia.org/wiki/Pentium_FDIV bug

WESTERN

Example 3: Boeing 737 crash &% AUSTRALIA

* In 2018, a Lion Air Boeing 737 Max
8 jetliner crashed into the Java Sea
' off Indonesia, killing all 189
" passengers and crew

» Investigators described the cause
as a “glitch” in the plane’s flight-
control software.

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-
capital.html

TTTTTTTTTTTTTTT

WESTERN
%a=# AUSTRALIA

What can we do
about it?

WESTERN
Our goal A& AUSTRALIA

« Consider the a Python function that takes two numbers and returns a result:

calculate(a, b):

« Assume that is incredibly important that for any values of a and b then:

calculate(a, b) == calculate(b, a)

« If this property doesn't hold then all kitten pictures are going to be deleted from
the internet... forever!

WESTERN
Formal methods \ & AUSTRALIA

In testing the approach is to think of corner cases that might break, e.g.
» calculate(0,1) vs calculate(1,0)
« calculate(-1,2) vs calculate(-1,2)
» calculate(0,0) vs calculate(0,0)

However, this doesn't give us a guarantee that the property holds.
Formal methods are a collection of methods by which we can take a computer

programs and a set of properties that we know should hold of it and obtain strong
guarantees that the program satisfies those properties.

Formal verification \ & AUSTRALIA

« All software is really very complicated mathematical functions.
« Formal verification consists of:

1. Make a mathematical model of our software
- ideally automatically from your program

2. Write down the property that you want to hold
- using some form of logic (e.g. predicate logic)

3. Proving that the model satisfies the property
- either done manually or automatically or some form of both.

WESTERN

Formal verification spectrum A& AUSTRALIA

» Formal methods exists broadly on the following spectrum.
1. Testing — no property, no proof
2. Property-based testing — property but no proof
3. Model checking — property and unknown proof

4. Interactive Theorem Provers — property and known proof

* In this lecture we will look at the last three types.

TTTTTTTTTTTTTTT

WESTERN
%a=# AUSTRALIA

Property-based
testing

° Fooguey 1HE UNIVERSITY OF
Property-based testing W), WESTERN

Key idea:
* You write down the property.
« The computer generates test cases automatically!

Property-based testing was introduced by researchers in the Haskell community in
1999.

»Haskell
QuickCheck

There are now property-based checking libraries available in almost all major
programming languages.

WESTERN

Property-based testing & AUSTRALIA

Steps

-

: Define a property P(x).

-

S€

: Choose a strategy for generating values for "x'.

N
-
-

Sl

3. Library: Use the strategy to generate x4, X,, ... and test P(x,), P(x,), ...
« The strategy may use the results of the previous tests to inform the

generation of the next test.

4. Library: If a counter-example x; is found, automatically shrink x; to be as
simple as possible, and then fail the test.

Industrial applications

adWs

Correctness of key
algorithms supporting
cloud computing

AUTO SAR

Correctness of reference
implementation for operating
systems for vehicles

w AUSTRALIA

Co) Jane
Street

Correctness of financial
trading algorithms

<3 Dropbox

Correctness of file
synchronisation algorithms

° Fooguey 1HE UNIVERSITY OF
Property-based testing W), WESTERN

* Pros:
1. Write a single test and test many values at the same time.
2. Intelligently test a much larger range of values and find many more bugs
3. Often quicker to write than normal tests.

« Cons:

1. For complex inputs, defining a strategy for generating data can be
complicated.

2. Still no hard guarantees!

TTTTTTTTTTTTTTT

WESTERN
%a=# AUSTRALIA

Model-checking
tools

=y THE UNIVERSITY OF

Model-checking @, WESTERN

Key idea:
* You write down the property
* The computer proves it automatically!

i : 3 WESTERN
How does model-checking work: A&} AUSTRALIA

» There used to be many different domain-specific model checkers.

« About 10-20 years ago, researchers found that a family of tools called SMT
solvers could solve problems from almost all domains.

« Many mainstream SMT solvers accept queries in a standard format called
SMTLIB, e.g.
1. Z3
2. CVC5
3. Yices2

{ set—logic [Jf LIA)

{declare~fun x () Int)
{declare~fun v () Int)
[

(declare~fun z () Int)
| assert : [I:i » X) [% 2 'l,‘:l [= 12 ‘.lj_: :I ."}I'Ij]

1
{ assert | | (#« 3 x) (= 6 v) (= 3 2)) 12))
i

i : 3 WESTERN
How does model-checking work: A&} AUSTRALIA

« Procedure for a domain-specific tool:
1. User: writes down their property in a high-level language.

2. Tool: compiles down the property to a set of SMTLIB queries.

3. Tool: calls an SMT solver to answer the queries.

4. Tool: converts any counter-example found back into a form
understandable by the user.

Industrial applications gg;; AUSTRALIA

AMD AIRBUS

Correctness of Correctness of aeroplane
computer-chip design. control systems.

@k— €Sa ar Microsoft

European Space Agency
Correctness of reference Correctness of Windows
implementation for operating hardware drivers
systems for vehicles.

https://github.com/ligurio/practical-fm

WESTERN

Pros and cons of model checking A& AUSTRALIA

* Pros:
1. Formal guarantee of correctness.

2. (Sometimes) don't have to alter your program.

« Cons:

1. Cannot prove more complicated properties
« see CITS2211 for non-computable problems, e.g. the halting problem.

2. Sometimes you are forced to rewrite your program to make life easier for
the model checker.

3. A counter-example doesn't immediately tell you why your program has
gone wrong.

Fooguey 1HE UNIVERSITY OF

2Y. WESTERN
e # AUSTRALIA

Interactive
Theorem Provers

WESTERN

Interactive Theorem Provers A& AUSTRALIA

Key idea:
* You provide the proof.
 The computer checks it.
Problem: Standard programming languages not designed to write proofs!

Solution: Custom program languages called theorem provers in which you can

WwWROCQ f%@dﬂ
VN

THEOREM PROVER

Industrial applications %), WESTERN

BAE SYSTEMS
Correctness of Correctness of military
computer-chip design. control systems.

Go gle % elastic

Correctness of Correctness of search
cryptographic protocols. algorithms

https://github.com/ligurio/practical-fm

WESTERN
Pros and cons of ITPs \ & AUSTRALIA

* Pros:
1. Formal guarantee of correctness.
2. Can represent pretty much any proof or argument.

3. Can be used to prove mathematical theorems as well!

« Cons:

1. Writing down a correct proof is 100 times more time-consuming than
writing the program!

2. You must write your program in specialised languages.

TTTTTTTTTTTTTTT

WESTERN
%a=# AUSTRALIA

Advice on using
Formal Methods

: WESTERN
Comparison of formal methods A& AUSTRALIA

Method Guarantees Property Proof Applicability Difficulty

Testing No No No High Low
Property- No Yes No Medium Low
based

testing

Model Yes Yes Yes Medium High
checking (unknown)

Interactive Yes Yes Yes High Extremely
Theorem High

Provers

THE UNIVERSITY OF
Takeaways 59, WESTERN

1. There is no good reason not to use property-based testing!
* Quick to setup and run!
* Much more powerful than traditional tests!

2. Model checking is situational
» Can be extremely powerful for relatively simple code and properties.
« Finicky to use with more complicated properties.

3. Interactive theorem provers are rarely the right answer (but very cool!)
 If either human lives or hundreds of millions of dollars depend on your
code running correctly, then you can justify the cost.

. , WESTERN
Limitations of formal methods! A& AUSTRALIA

66 9

All mathematical models are wrong. Some are useful.

1976, George Box, British Statistician

- All these methods check whether the program obeys your property....

- None of them guarantee that the property itself is correct!

TTTTTTTTTTTTTTT

WESTERN
%a=# AUSTRALIA

Large Language
Models and
Formal Methods

Uses of LLMs in Formal methods A&} AUSTRALIA

What not to do:

 Ask the LLM "Is this code correct?"

Hot research fields:
» Using LLMs to generate formal properties from human text.
» Automatic program repair based on formal properties.

« Using LLMs as generating strategies in property-based testing.

s WESTERN
The Holy Grail in Formal Methods A& AUSTRALIA

When you ask an LLM to "generate code that does X", the LLM should:

Translate X into a formal specification.

Generate code that does X.

Generate a proof that the code satisfies the specification.

Give the proof to an Interactive Theorem Prover to check.

(Optional but recommended!) The user checks that the specification means X.

abkwbd =

WESTERN
Formal methods for Neural networks A& AUSTRALIA

Software engineers: build neural networks as non-
ﬁ deterministic black-box models

Formal methods: can’t prove anything about them

Software engineers:

bt

_ ion time! WESTERN
Self-promotion time! \ & AUSTRALIA

When every gne 2

You 7ag.

My research interest: Can we use formal methods to improve neural networks?

=y THE UNIVERSITY OF

i N WESTERN
Adversarial Robustness AUSTRALIA

*How are you?’ %001 *Open the door”

WESTERN
My research & AUSTRALIA

I'm developing Vehicle - a tool for checking properties of neural networks.

Users can write their property in Vehicle and:
« Use model-checking to prove that a trained network obeys the property.
* (End of this year) Use the property to train the network!
« (Early next year) Use property-based testing to find counter-examples.

e
4

https://github.com/vehicle-lang/vehicle

https://github.com/vehicle-lang/vehicle
https://github.com/vehicle-lang/vehicle
https://github.com/vehicle-lang/vehicle

Lots of open research questions A&} AUSTRALIA

(For CITS4011, CITS5505, GENG4412, GENG5512)

Some research problems I'm interested in!

1. Evaluating the effectiveness of property-based testing with gradient descent.
2. The theory behind property-based testing with gradient descent.

3. Supporting properties that involve derivatives of functions.

4. Model checkers for neural networks using quantum computing.

(For CITS5551, CITS5552)

Many implementation-based software projects available as well!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

