
Formal Methods for
Software Assurance
CITS5501/CITS3501 - Software Testing and Quality Assurance

2025 - Semester 2Guest lecturer: Matthew Daggitt

Motivation

• Software engineers are
objectively bad at their
jobs compared to other
fields.

• Pretty much every piece
of non-trivial software has
bugs in.

• How bad can bugs be?

www.xkcd.com/2030 3

Motivation

4

Example 1: Knight Capital spending spree

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

• In 2012, one of the biggest trading

companies in the world pushed an

update to their automated trading

algorithm.

• A bug resulted in effectively an

infinite loop of buying stocks.

• Lost $400 million in 28 minutes and

the company went bankrupt.

5

Example 2: Intel Pentium processor

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

• In 1994, Intel released a processor

which didn't always divide numbers

correctly.

• Recall of the chips cost $500 million
USD (in 1994 money!).

6

Example 3: Boeing 737 crash

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-

capital.html

• In 2018, a Lion Air Boeing 737 Max

8 jetliner crashed into the Java Sea

off Indonesia, killing all 189

passengers and crew

• Investigators described the cause

as a “glitch” in the plane’s flight-

control software.

What can we do
about it?

• Consider the a Python function that takes two numbers and returns a result:

• Assume that is incredibly important that for any values of a and b then:

• If this property doesn't hold then all kitten pictures are going to be deleted from

the internet... forever!

8

Our goal

9

Formal methods

In testing the approach is to think of corner cases that might break, e.g.

• calculate(0,1) vs calculate(1,0)

• calculate(-1,2) vs calculate(-1,2)

• calculate(0,0) vs calculate(0,0)

However, this doesn't give us a guarantee that the property holds.

Formal methods are a collection of methods by which we can take a computer

programs and a set of properties that we know should hold of it and obtain strong
guarantees that the program satisfies those properties.

10

Formal verification

• All software is really very complicated mathematical functions.

• Formal verification consists of:

1. Make a mathematical model of our software
- ideally automatically from your program

2. Write down the property that you want to hold

- using some form of logic (e.g. predicate logic)

3. Proving that the model satisfies the property

- either done manually or automatically or some form of both.

11

Formal verification spectrum

• Formal methods exists broadly on the following spectrum.

1. Testing – no property, no proof

2. Property-based testing – property but no proof

3. Model checking – property and unknown proof

4. Interactive Theorem Provers – property and known proof

• In this lecture we will look at the last three types.

Property-based
testing

Property-based testing

Property-based testing was introduced by researchers in the Haskell community in

1999.

There are now property-based checking libraries available in almost all major
programming languages.

Key idea:

• You write down the property.

• The computer generates test cases automatically!

Property-based testing

Steps

1. User: Define a property P(x).

2. User: Choose a strategy for generating values for `x`.

3. Library: Use the strategy to generate x1, x2, … and test P(x1), P(x2), …

• The strategy may use the results of the previous tests to inform the

generation of the next test.

4. Library: If a counter-example xi is found, automatically shrink xi to be as

simple as possible, and then fail the test.

Industrial applications

Correctness of key

algorithms supporting

cloud computing

Correctness of financial

trading algorithms

Correctness of reference

implementation for operating

systems for vehicles

Correctness of file

synchronisation algorithms

Property-based testing

• Pros:

1. Write a single test and test many values at the same time.

2. Intelligently test a much larger range of values and find many more bugs

3. Often quicker to write than normal tests.

• Cons:

1. For complex inputs, defining a strategy for generating data can be

complicated.

2. Still no hard guarantees!

Model-checking
tools

Model-checking

Key idea:

• You write down the property

• The computer proves it automatically!

How does model-checking work?

• There used to be many different domain-specific model checkers.

• About 10-20 years ago, researchers found that a family of tools called SMT

solvers could solve problems from almost all domains.

• Many mainstream SMT solvers accept queries in a standard format called

SMTLIB, e.g.

1. Z3

2. CVC5

3. Yices2

How does model-checking work?

• Procedure for a domain-specific tool:

1. User: writes down their property in a high-level language.

2. Tool: compiles down the property to a set of SMTLIB queries.

3. Tool: calls an SMT solver to answer the queries.

4. Tool: converts any counter-example found back into a form

understandable by the user.

Industrial applications

Correctness of

computer-chip design.

Correctness of aeroplane

control systems.

Correctness of reference

implementation for operating

systems for vehicles.

Correctness of Windows

hardware drivers

https://github.com/ligurio/practical-fm

Pros and cons of model checking

• Pros:

1. Formal guarantee of correctness.

2. (Sometimes) don't have to alter your program.

• Cons:

1. Cannot prove more complicated properties
• see CITS2211 for non-computable problems, e.g. the halting problem.

2. Sometimes you are forced to rewrite your program to make life easier for

the model checker.

3. A counter-example doesn't immediately tell you why your program has

gone wrong.

Interactive
Theorem Provers

Interactive Theorem Provers

Key idea:

• You provide the proof.

• The computer checks it.

Problem: Standard programming languages not designed to write proofs!

Solution: Custom program languages called theorem provers in which you can

write both proofs

Industrial applications

Correctness of

computer-chip design.

Correctness of military

control systems.

Correctness of

cryptographic protocols.

Correctness of search

algorithms

https://github.com/ligurio/practical-fm

Pros and cons of ITPs

• Pros:

1. Formal guarantee of correctness.

2. Can represent pretty much any proof or argument.

3. Can be used to prove mathematical theorems as well!

• Cons:

1. Writing down a correct proof is 100 times more time-consuming than

writing the program!

2. You must write your program in specialised languages.

Advice on using
Formal Methods

28

Comparison of formal methods

Method Guarantees Property Proof Applicability Difficulty

Testing No No No High Low

Property-

based

testing

No Yes No Medium Low

Model

checking

Yes Yes Yes

(unknown)

Medium High

Interactive

Theorem

Provers

Yes Yes Yes High Extremely

High

29

Takeaways

1. There is no good reason not to use property-based testing!

• Quick to setup and run!

• Much more powerful than traditional tests!

2. Model checking is situational
• Can be extremely powerful for relatively simple code and properties.

• Finicky to use with more complicated properties.

3. Interactive theorem provers are rarely the right answer (but very cool!)

• If either human lives or hundreds of millions of dollars depend on your
code running correctly, then you can justify the cost.

30

Limitations of formal methods!

All mathematical models are wrong. Some are useful.

1976, George Box, British Statistician

- All these methods check whether the program obeys your property....

- None of them guarantee that the property itself is correct!

Large Language
Models and

Formal Methods

What not to do:

• Ask the LLM "Is this code correct?"

Hot research fields:

• Using LLMs to generate formal properties from human text.

• Automatic program repair based on formal properties.

• Using LLMs as generating strategies in property-based testing.

Uses of LLMs in Formal methods

The Holy Grail in Formal Methods

When you ask an LLM to "generate code that does X", the LLM should:

1. Translate X into a formal specification.

2. Generate code that does X.

3. Generate a proof that the code satisfies the specification.
4. Give the proof to an Interactive Theorem Prover to check.

5. (Optional but recommended!) The user checks that the specification means X.

34

Formal methods for Neural networks

My research interest: Can we use formal methods to improve neural networks?

Self-promotion time!

Adversarial Robustness

37

My research

https://github.com/vehicle-lang/vehicle

I'm developing Vehicle - a tool for checking properties of neural networks.

Users can write their property in Vehicle and:

• Use model-checking to prove that a trained network obeys the property.

• (End of this year) Use the property to train the network!
• (Early next year) Use property-based testing to find counter-examples.

https://github.com/vehicle-lang/vehicle
https://github.com/vehicle-lang/vehicle
https://github.com/vehicle-lang/vehicle

38

Lots of open research questions

(For CITS4011, CITS5505, GENG4412, GENG5512)

Some research problems I'm interested in!

1. Evaluating the effectiveness of property-based testing with gradient descent.

2. The theory behind property-based testing with gradient descent.

3. Supporting properties that involve derivatives of functions.

4. Model checkers for neural networks using quantum computing.

(For CITS5551, CITS5552)

Many implementation-based software projects available as well!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

