
Introduction Admin Software quality Testing concepts

CITS5501 Software Testing and Quality Assurance
Introduction

Unit coordinator: Arran Stewart

1 / 39

Introduction Admin Software quality Testing concepts

Introduction

2 / 39

Introduction Admin Software quality Testing concepts

Overview

▶ Goals
▶ What is this course about?
▶ What do we cover, and why?

▶ Admin
▶ Unit website & announcements
▶ Teaching activities
▶ Assessment & feedback
▶ Prerequisites

▶ Assessment tips
▶ Testing and QA introduction

3 / 39

Introduction Admin Software quality Testing concepts

Highlights

This lecture gives a big picture view of what we will cover and why.

The big questions –

▶ There is a huge diversity of software projects in existence –
from web sites and apps, to systems embedded in hardware
(anything from aeroplane sensors to washing machines), from
tiny personal projects to programs running on supercomputers
– how can we know how to test them and ensure they’re of
reasonable quality?

▶ For all these sorts of software projects – what makes them high
(or low) quality? And how can we repeatedly ensure we
produce software of high quality?

4 / 39

Introduction Admin Software quality Testing concepts

Examples
▶ Software applications can be complex

▶ Just the --help message alone, for a medium-complexity
program like those used to manage Amazon or Google or Azure
cloud virtual machines, will typically show dozens or even
hundreds of sub-commands, each with many options:

{latex} \begin{center} %\includegraphics[width=1.1\textwidth]{lect01-images/amazon-az-tool.png} \includegraphics[width=1.1\textwidth]{/mnt/data/dev/06-teaching/cits5501/cits5501-sources-NEW/lectures/A--intro/lect01-images/amazon-az-tool.png} \end{center}

5 / 39

Introduction Admin Software quality Testing concepts

Examples

▶ How would we go about testing that an application like this
does what it says it does?

▶ Even more complex command-line applications include
compilers (like javac, the Java compiler) – the specification
alone for programs like this often runs to hundreds of pages.

6 / 39

Introduction Admin Software quality Testing concepts

Why are testing techniques useful?

▶ Some developers will be working on entirely novel projects, but
often, we will be working with legacy software.

▶ If we are asked to make a change (a bug fix or improvement)
to existing software – how do we know what we are doing is
correct? How do we know we aren’t introducing new bugs?

▶ When working with legacy software, often the first step is to
ensure a good testing framework exists – otherwise, we
potentially have no idea if our change has actually improved
things, or made things worse.

▶ (Testing is important for novel, non-legacy software too, of
course – but often the developers have a better understanding
of what effects their changes are likely to have.)

7 / 39

Introduction Admin Software quality Testing concepts

Types of testing

We will look at a wide range of testing and QA techniques – from
the very simple, like unit testing (which every developer should be
using), through to the technical and complex (formal methods and
software modelling).

8 / 39

Introduction Admin Software quality Testing concepts

Examples

Some examples of these sorts of techniques in use:

Data-driven testing
used in JUnit and many other testing frameworks

Property-based testing
first introduced in the Haskell language, and adopted
in many others

Verification of software properties
e.g. the provably secure seL4 Microkernel

Model checking
Used e.g. by Microsoft to test that driver code (which
runs with high privileges) is using the API correctly

9 / 39

https://sel4.systems/

Introduction Admin Software quality Testing concepts

Methodology

In addition to various testing and QA techniques, we’ll look at a
general methodology for testing software.

Meaning that even when presented with a software system that is
totally novel to you, or tools you’ve never used before, you’ll still be
able to design and implement an adequate testing and quality
assurance plan.

10 / 39

Introduction Admin Software quality Testing concepts

Admin

11 / 39

Introduction Admin Software quality Testing concepts

Unit coordinator

Unit Coordinator: Arran Stewart
Email: cits5501-pmc@uwa.edu.au
Office: Room G.08 CSSE Building
Consultation: Between 2–4pm Thursdays, or email for an

appointment.
Unit website: accessible via GitHub, at

https://github.com/cits5501/

12 / 39

https://github.com/cits5501/

Introduction Admin Software quality Testing concepts

Announcements

▶ Announcements will be
made in lectures, and on the
unit help forum, help5501.

▶ It’s important to check the
forum regularly – at least
twice a week.

▶ If you log in and visit the
forum site, you can set it to
alert you via email when
new postings are made.

13 / 39

https://secure.csse.uwa.edu.au/run/help5501

Introduction Admin Software quality Testing concepts

Unit contact hours – details

Lectures:

▶ You should attend one lecture per week – you should either
attend in person or watch the recorded lecture.
(Recorded lectures are available via the university’s Blackboard
LMS, at https://lms.uwa.edu.au/.)

14 / 39

https://lms.uwa.edu.au/

Introduction Admin Software quality Testing concepts

Unit contact hours – details

Labs:

▶ Labs are run on a “drop-in” basis.
▶ Each week, a lab worksheet will be available which you can

work through at your own pace from home or on campus
▶ (Plus, in some weeks, unassessed exercises on the CSSE Moodle

server at https://quiz.jinhong.org)
▶ If you encounter any issues or have questions, feel free to drop

in to one of the lab sessions to ask them (on a first-come,
first-served basis)

▶ All timetabled lab sessions can be viewed via the UWA
Timetable site – see
https://cits5501.github.io/#weekly-activities

15 / 39

https://quiz.jinhong.org
https://quiz.jinhong.org
https://cits5501.github.io/#weekly-activities

Introduction Admin Software quality Testing concepts

Non-timetabled hours

A six-point unit is deemed to be equivalent to one quarter of a
full-time workload, so you are expected to commit 10–12 hours per
week to the unit, averaged over the entire semester.

Outside of the contact hours (3 hours per week) for the unit, the
remainder of your time should be spent reading the recommended
reading, attempting exercises and working on project tasks.

16 / 39

Introduction Admin Software quality Testing concepts

Textbooks

See the unit website for details of the textbooks you will need access
to:

https://cits5501.github.io/schedule/#recommended-readings

(Or just go to https://cits5501.github.io/faq and search for
“textbook”.)

17 / 39

https://cits5501.github.io/schedule/#recommended-readings
https://cits5501.github.io/faq

Introduction Admin Software quality Testing concepts

Assessment

The assessment for CITS5501 consists of an online quiz, a
mid-semester test, a project, and a final examination: see the
Assessment page at

▶ https://cits5501.github.io/assessment/

All assessments are to be done individually – there is no group or
pair work – and are submitted using Moodle.

18 / 39

https://cits5501.github.io/assessment/
https://quiz.jinhong.org

Introduction Admin Software quality Testing concepts

Schedule

▶ General overview of topics:
▶ Testing & testing methodology
▶ Quality assurance
▶ Formal methods and formal specifications

▶ The current unit schedule is available on the unit website:

https://cits5501.github.io/schedule/

▶ The schedule gives recommended readings for each topic:
either chapters from the recommended texts, or extracts. Your
understanding of the lecture and lab material will be greatly
enhanced if you work through these readings prior to attending.

19 / 39

https://cits5501.github.io/schedule/

Introduction Admin Software quality Testing concepts

Prerequisites

The prerequisites for this unit are 12 points of programming units.
At UWA, that should mean you’re familiar with at least one
statically type-checked programming language (usually Java or C).

If you aren’t – let me know ASAP.

20 / 39

Introduction Admin Software quality Testing concepts

Programming languages

We will mostly be using the Java programming language.

A detailed knowledge of Java is not essential – if you have a good
knowledge of C, instead, it should be straightforward to pick up the
parts of the language you need.

I will review some of the basics of the language in class; you should
make sure you have access to a textbook on Java (almost any will
do) to bring yourself up to speed.

21 / 39

Introduction Admin Software quality Testing concepts

Programming languages

At the end of semester, we’ll spend a week or two using a language
created by Microsoft Research for proving program correctness,
Dafny.

It’s more similar to the C# language than Java, but shouldn’t be
hard to pick up.

22 / 39

https://rise4fun.com/Dafny/tutorial/guide

Introduction Admin Software quality Testing concepts

Programming languages

We’ll also be using a modelling language called Alloy (again,
towards the end of semester).

It too has a syntax somewhat similar to Java.

23 / 39

http://alloytools.org/tutorials/online/

Introduction Admin Software quality Testing concepts

Software quality

24 / 39

Introduction Admin Software quality Testing concepts

Software quality - what is it?

▶ What are some ways that software can be good?
And what are some ways that it can be bad (or, less than
ideal)?

25 / 39

Introduction Admin Software quality Testing concepts

Ensuring quality software

There are multiple aspects to building quality software:

Organisational processes
How does the software team operate?

Process and software standards
Are particular standards used?

Process improvement
How is success in building quality software measured
and improved?

26 / 39

Introduction Admin Software quality Testing concepts

Ensuring quality software, cont’d

Requirements specification
How do we work out what software we should be
building? And how do we work out whether we built
the right software?

Formal methods
Ways of proving that software is correct

Testing
Identifying and correcting bugs

27 / 39

Introduction Admin Software quality Testing concepts

The software “illities”

There are many features that contribute to the success of software,
besides just its “correctness” – for example:

▶ usability
▶ maintainability
▶ scalability
▶ reliability/availability
▶ extensibility
▶ securitability [sic]
▶ portability

28 / 39

Introduction Admin Software quality Testing concepts

The software “illities”

▶ usability
▶ maintainability
▶ scalability
▶ reliability/availability
▶ extensibility
▶ securitability [sic]
▶ portability

You should know from previous units that these are called non-functional
system properties.

▶ They describe not what a system (or program, or module, or other
unit of software) does, in terms of inputs and outputs –
(i.e., its behaviour, when modelled as a function)

▶ – but rather, the manner in which it does it (securely, portably, etc.)

29 / 39

Introduction Admin Software quality Testing concepts

Types of testing

Testing is used in several ways in modern software development:

Unit tests
Ensuring functional units are correct

Integration testing
Ensuring components work together

End-to-end testing
Ensuring user stories about the system work as
expected, in a particular environment

Acceptance testing
Ensuring contractual obligations are met

30 / 39

Introduction Admin Software quality Testing concepts

Types of testing, cont’d

Regression testing
Running test suites to ensure old bugs are
re-introduced

System testing
Ensuring the system as a whole works, and performs
as expected under particular workloads

Test driven design
Improving test quality by adopting “test-first”
software processes

Tests as documentation
Complete test suites are often the most accurate
documentation a project has.

31 / 39

Introduction Admin Software quality Testing concepts

Testing concepts

32 / 39

Introduction Admin Software quality Testing concepts

Faults and failures

Software bug (aka fault or defect)

A defect in a system’s static artifacts – usually source code –
which at runtime will (if executed or encountered) cause the
system to behave incorrectly.

Example: at a particular line in our program, a for loop accesses
elements of an array arr from index position 0, through to index
position arr.length. This will go out of bounds, and (in Java)
throw an exception, which is almost never the intended behaviour.

Often, the static artifact will be a file of source code, but could be
a configuration file, a build file (e.g. Makefile), or similar.

33 / 39

Introduction Admin Software quality Testing concepts

Faults and failures, cont’d

Software failure

Externally observable incorrect behavior with respect to the
requirements (or other description of the expected behavior) of
some software system, module or other unit.

Example: Instead of operating as expected (say, sorting a file), a
program when run displays a stack-trace and crashes.

A defect exists in the source code (or other static artifact) even
when the system is not running; we can point it out, and (usually)
predict what will happen at run-time when it is encountered.

In contrast, a failure is a type of behaviour that we observe at
run-time; if the system is not currently executing, then by
definition, it’s not exhibiting any failures.

34 / 39

Introduction Admin Software quality Testing concepts

Faults and failures, cont’d

Invariants
We will see that failures are usually the results of a violation of a system’s
invariants – facts that the developers expect to be true, at various points in
the program.

Example: Amara expects that an array index in the loop they are writing will
always be within bounds of the array.

Example: Bernardo writes a binary search routine, and expects it will only ever
be passed a sorted array. But in the current project, Carla has passed an
unsorted array. As a consequence, Carla will likely observe failures when the
code is run.

Types of invariants include loop invariants, class invariants, and preconditions.

Once an invariant is violated, the system is no longer in a sensible state –
assumptions under which developers wrote their code are no longer true – and
(for many systems) it’s unsafe for the program to continue running.
(Continuing to run could do more harm than good.)

35 / 39

https://en.wikipedia.org/wiki/Binary_search
https://en.wikipedia.org/wiki/Loop_invariant
https://en.wikipedia.org/wiki/Class_invariant
https://en.wikipedia.org/wiki/Precondition

Introduction Admin Software quality Testing concepts

Faults and failures, cont’d

So, what exactly happens if an invariant is violated?

If we are lucky, the violation might cause the program to quickly terminate

▶ (e.g. If Amara’s loop is Java or Python code, an out-of-bounds
exception will be thrown, and the program will likely terminate.)

If we are unlucky, the program will continue, but is likely to produce
incorrect results later, or to corrupt in-memory data

▶ (e.g. If Amara’s loop is written in C, no bounds checking occurs, but
data will likely be silently corrupted.)

▶ (e.g. Carla’s code that called Bernardo’s binary-search will likely give
incorrect results, but probably will not result in an exception.)

Sometimes a running system in which an invariant has been violated is
said to be in an erroneous or inconsistent state.

36 / 39

Introduction Admin Software quality Testing concepts

Failures – incorrect behaviour

We said a failure is when some software does not behave in accordance
with its requirements.

What are requirements?

Kinds of requirement or specification:

▶ Business needs (“why is this needed? what value does it have for the
business?”)

▶ Requirements (“what should the system do? and what performance
criteria must it meet?”)

▶ System specifications (“the requirements will be met by constructing
subsystems and modules that satisfy criteria A, B, C, etc”)

In this unit, we will usually care less about what sort of requirement or
specification something is, and more about the fact that we have to satisfy
it.

37 / 39

Introduction Admin Software quality Testing concepts

Fault and failure scenarios

What are the following – faults or failures?

▶ Daniel is writing his project report for CITS5501. He attempts
to save the report, but instead, the report contents is corrupted.

▶ In code she is writing, Elise calls the Thread.sleep() method in
Java, which is used to suspend execution of a program thread
of control.
The method is supposed to be passed a number of milliseconds
to sleep for, but Elise inadvertently passes the number of
microseconds.

38 / 39

Introduction Admin Software quality Testing concepts

Fault and failure scenarios

What are the following – faults or failures?

▶ Daniel is writing his project report for CITS5501. He attempts
to save the report, but instead, the report contents is corrupted.

▶ In code she is writing, Elise calls the Thread.sleep() method in
Java, which is used to suspend execution of a program thread
of control.
The method is supposed to be passed a number of milliseconds
to sleep for, but Elise inadvertently passes the number of
microseconds.

38 / 39

Introduction Admin Software quality Testing concepts

Goals of testing

Some conceptions of the goals of testing – which do you think are
correct?

▶ The purpose of testing is to show correctness of software
▶ The purpose of testing is to identify defects in the software
▶ The purpose of testing is not to prove anything specific, but to

reduce the risk of using the software
▶ Testing is a mental discipline that helps all IT professionals

develop higher quality software

39 / 39

	Introduction
	Admin
	Software quality
	Testing concepts

