
Testing concepts (cont’d) Testing Documenting code Unit tests

CITS5501 Software Testing and Quality Assurance
Introduction to testing; unit testing

Unit coordinator: Arran Stewart

1 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Highlights

▶ Testing concepts
▶ Documenting code
▶ APIs
▶ Unit testing
▶ Testable documentation
▶ Property-based testing

2 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Highlights

▶ Documentation and APIs: how do we work out what the
correct behaviour of a piece of software is so that we can test
it?

▶ Unit testing: What is unit testing, what is the terminology, and
how do we write unit tests?

3 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Testing concepts (cont’d)

4 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Faults and failures

Last lecture, we were talking about faults and failures (and
erroneous or inconsistent states).

In normal English, we might not make much distinction between
them.

But in software engineering, it can be useful to distinguish whether
we’re talking about

▶ the behaviour of a running system (what we can observe about
what the system does)

▶ the static artifacts from which the system is produced (e.g. files
of source code, or data files in formats like HTML or CSS)

▶ the runtime state of the system (i.e., what’s currently stored in
memory)

5 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

(Aside: terminology)

We will use terminology that’s roughly consistent with:

▶ Ammann & Offutt,1 and
▶ Bruegge & Dutoit2

but you may find other sources that use different terminology.

(In particular, sources vary greatly in what they consider “error” to
mean.)

1Amman, P. & J. Offut, Introduction to Software Testing (2nd edn, 2017)
2Dutoit, B.B. and A.H. Dutoit., Object-Oriented Software Engineering: Using

UML, Patterns, and Java (3rd edn, 2014).
6 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Failures

Recall that:

▶ A failure is any deviation of the observed behaviour of a
program or system from the specification.

It describes the system’s behaviour.

(Can we say a file of source code contains a “failure”? No. But can
we say a failure occurs when some program is run? Yes.)

7 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Failure examples

If a program should save a document when the user types “ctrl-s”,
but instead crashes when the filename contains a space – that would
be a failure.

▶ The program would be failing to meet a functional requirement

8 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Failure examples, cont’d

If a program should always respond to user input within 0.1 seconds,
but instead starts “lagging” when more than 5 documents are open
– that’s also a failure.

▶ This time, the program would be failing to meet a
non-functional requirement, that the system meet particular
standards for responsiveness.

9 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Failure examples, cont’d

If an electronic voting booth should accurately record votes cast,
but due to a cosmic ray flipping a bit in memory, 4096 additional
votes are counted for one candidate – that’s also a failure.

Some questions:

▶ In this case – what sort of requirement has the system likely
failed to meet: functional or non-functional?

▶ Is there any corresponding defect?
▶ And is there any reasonable way of preventing or avoiding the

failure?

10 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Faults

Also called bugs or defects.

▶ A fault is something in the static artifacts of a system that
(when executed or otherwise encountered) will cause a failure.

For an example of a fault, consider the following Java code,
intended to iterate over an array of book titles and print them out:

for(int i = 0; i <= book_titles.length; i++) {

System.out.println(book_titles[i]);

}

11 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Faults

Also called bugs or defects.

▶ A fault is something in the static artifacts of a system that
(when executed or otherwise encountered) will cause a failure.

For an example of a fault, consider the following Java code,
intended to iterate over an array of book titles and print them out:

for(int i = 0; i <= book_titles.length; i++) {

System.out.println(book_titles[i]);

}

11 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Fault example

for(int i = 0; i <= booktitles.length; i++) {

System.out.println(booktitles[i]);

}

Should be ‘<’

12 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Broad definition of “fault”

Some sources will use “fault” more broadly to mean the cause of a
failure besides just defects in the code – e.g. perhaps cosmic rays –
but we’ll mostly be concerned with problems in the code.

Not every failure can be traced back to a single spot in the code:
failures of security, scalability, performances etc. are global
properties of the system artifacts.

13 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Erroneous state

In the textbooks I’ve mentioned, when the authors use the phrase
“error” or “erroneous state”, they mean the situation at runtime,
where some fault has become reflected in the system’s runtime state.

▶ So you can have a fault in the code (e.g. off-by-one Java loop
error we saw), but if we execute the program and (at least this
time round) that bit of code doesn’t happen to get run, we
don’t get a corresponding erroneous state.

14 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Invariants

In many cases (for failures of functional requirements, at least), the
failure arises because some invariant (e.g. a class or program
invariant) has been violated.

An invariant is just a statement – a proposition – which can be true
or false about the runtime state.

E.g.: “The value of i is always greater than or equal to zero, and
less than book_titles.length” (and thus is a valid index into the
array).

Let’s see an example of a class invariant.

15 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Class invariant example – a stack

/** A Stack data type, implemented using an array */

class ArrayStack implements Stack {

int elements[];

/* class invariant: topOfStack always points to current top item

* (or −1 if empty)*/

int topOfStack;

public push(int value) {

topOfStack += 1;

if (topOfStack >= 20) { /* throw exception */ }

elements[topOfStack] = value;

}

public int pop() {

if (topOfStack < 0) { /* throw exception */ }

return elements[topOfStack];

}

// ... other methods ...

}

topOfStack is never decremented!

16 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

System invariant example – databases

Suppose our system has a database, with records representing
students, units, and enrolments.

An enrolment is a (studentId, unitId) pair, e.g.:
(23456789, CITS5501).

It’s a (plainly sensible) rule of our system that an enrolment record
must not contain a student ID for a student that doesn’t exist, nor
a unit ID for a unit that doesn’t exist.

If this rule is breached (perhaps a unit gets removed, and the
corresponding enrolments don’t), then our system is now in an
inconsistent (or erroneous) state.

17 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Invariants

We will look at invariants more in the lab/workshops.

18 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Reliability

▶ The reliability of a system is the degree to which its observed
behaviour conforms to its specification.

19 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Testing

20 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Definition

We define testing as a systematic attempt to find faults in a
software system in a planned way.

(Adapted from Bruegge & Dutoit)

21 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

What sorts of things can we test?

We can classify tests by the “level” of component or system they
work with:

▶ We can test some code which is a small part of a larger system
– for instance: a single procedure, method or function. (How
small can it be?) This is called unit testing.

▶ We can test how units, classes, modules or other components
of a system work together – this is called integration testing

▶ We can test an entire system – this is called system testing (or
“system-level testing”).

We can test whether the system meets its specifications
(system testing proper), and whether it properly executes some
scenario in an appropriate environment (end-to-end testing).

22 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

What sorts of things can we test?

We can also classify them by the purpose of the test, or when in the
software development lifecycle the testing activity occurs:

▶ After making a change to some component (an enhancement,
or bug fix, or re-factoring): we can check whether it still passes
all relevant tests. This is called regression testing.

▶ On delivery of a system: we can ‘test’ whether a system meets
a customer’s expectations – this is called acceptance testing

23 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Testing

▶ Testing requires a different mind-set from construction: when
constructing (or designing) software, we usually focus on what
it will do when things go right;
when testing, we focus on finding faults – occasions when
things do wrong.

▶ Programmers do often refer to tests as “failing” – but when a
test indicates a bug, that’s actually example of it succeeding in
its purpose (i.e., showing the presence of a fault)

24 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit testing and unit specifications

▶ We’ll start by looking at the “lowest” level of tests, unit tests.

▶ When we test a unit of code, we aim to (by finding faults and
removing them) increase our confidence that it meets its
specifications.
If we don’t have any specifications for it, that obviously makes
life difficult.

▶ So in general, we aim to document the intended behaviour of
any externally accessible unit.

(Some units might be purely internal – “protected” or
“private”, for instance, in Java – it is usually good practice to
document those as well.)

25 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Documenting code

26 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Documenting units

▶ Most modern languages provide some way of documenting the
specification of units inline (that is, in the body of the code,
rather than in a separate reference manual) and extracting that
documentation for use by developers.

▶ For instance:
▶ Java provides the Javadoc tool
▶ Python provides the Pydoc tool

▶ For languages which do not have such a tool, applications such
as Doxygen allow units to be documented and the
documentation extracted.

27 / 79

http://www.doxygen.nl/

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc example

Consider the task of finding the position of the first occurrence of
some character in a string.

In Java, the String.indexOf() method will do this for us.

Its signature is:
int indexOf(int ch)

That is, it takes an int and returns an int. (Why not a char? For
historical reasons we won’t get into.)

28 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc example, cont’d
If we look up the Java documentation for the indexOf method, we
will get the following information:

Returns the index within this string of the first occurrence of the
specified character. If a character with value ch occurs in the character
sequence represented by this String object, then the index (in Unicode
code units) of the first such occurrence is returned. For values of ch
in the range from 0 to 0xFFFF (inclusive), this is the smallest value k
such that:
this.charAt(k) == ch

is true. For other values of ch, it is the smallest value k such that:
this.codePointAt(k) == ch is true. In either case, if no such character
occurs in this string, then -1 is returned.
Parameters:
ch - a character (Unicode code point).
Returns:
the index of the first occurrence of the character in the character
sequence represented by this object, or -1 if the character does not
occur.

29 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc example, cont’d

Key points from the Javadoc documentation:

When we call someString.indexOf(ch):

▶ If ch is not in someString, the method returns -1

▶ If ch is in someString, the method returns “the smallest value k
such that > this.codePointAt(k) == ch”

(Or: “The first position in someString where the character ch

appears.” Which of the two is easier to understand? Which is
easier to write a test for?)

(Are there any other possibilities not covered by the
documentation?)

30 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc example, cont’d

Key points from the Javadoc documentation:

When we call someString.indexOf(ch):

▶ If ch is not in someString, the method returns -1

▶ If ch is in someString, the method returns “the smallest value k
such that > this.codePointAt(k) == ch”

(Or: “The first position in someString where the character ch

appears.” Which of the two is easier to understand? Which is
easier to write a test for?)

(Are there any other possibilities not covered by the
documentation?)

30 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc example, cont’d

The documentation for the indexOf method is produced from a specially
written comment which looks something like this:
/** Returns the index within this string of the first occurrence of the

* specified character. If a character with value ch occurs in the character

* sequence represented by this String object, then the index (in Unicode code

* units) of the first such occurrence is returned. For values of ch in the range

* from 0 to 0xFFFF (inclusive), this is the smallest value <i>k</i> such that:

* this.charAt(<i>k</i>) == ch

* is true. For other values of ch, it is the smallest value <i>k</i> such that:

* this.codePointAt(<i>k</i>) == ch

* is true. In either case, if no such character occurs in this

* string, then −1 is returned.

*

* @param ch a character (Unicode code point).

* @return the index of the first occurrence of the character in the

* character sequence represented by this object, or

* −1 if the character does not occur.

*/

31 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Javadoc conventions

The Javadoc comment is normally placed just before the method it
documents, and begins with a double asterisk (“/**”)

▶ It describes what the method does, what parameters should be
passed in, and what result will be returned.

▶ It uses the @param markup to describe each parameter.
▶ It uses the @return markup to describe the return value.

32 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Pydoc
In Python, the nearest equivalent method to Java’s indexOf would
be String.index, which searches for a substring within another
string.

It does not actually have Pydoc documentation, but if it did, it
would look like this:

...

def index(self, substr):

"""

Returns the index of the first occurrence of substr in

the string.

If substr does not occur within the string, raises a

ValueError exception.

"""

...
33 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Pydoc

Points to note:

▶ Instead of returning -1 when the string does not occur, Python
throws an exception.

▶ In Python, this is a typical idiom: exceptions are often thrown
to indicate the absence of something.

▶ More on exceptions later.

34 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Python docstrings

▶ The Pydoc tool makes use of Python docstrings.
▶ If the first expression within a module, class, function or

method is a string, then that is used as the docstring for that
module (or class or function or method).

▶ Unlike Javadoc, Pydoc does not have special markup for
documenting parameters or return values – but more
comprehensive documentation tools exist (the chief one being
Sphinx) which do.

35 / 79

http://www.sphinx-doc.org/

Testing concepts (cont’d) Testing Documenting code Unit tests

Documenting a Python function

▶ So you can document a function by making the first expression
in the function a string:
...

def myFunction(myArg):

"""

This function frobnicates the argument "myArg"

"""

...

36 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Documenting a Python class

▶ And you can document a class by making the first expression in
the class a string:
...

class MyClass:

"The MyClass class provides a frobnication service"

...

▶ Similarly for Python modules.

37 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs

▶ The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API3 of the module – the “Application Programming Interface”.

▶ The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.

▶ (Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

3See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

38 / 79

https://nordicapis.com/who-invented-the-api/

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs

▶ The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API3 of the module – the “Application Programming Interface”.

▶ The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.

▶ (Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

3See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

38 / 79

https://nordicapis.com/who-invented-the-api/

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs

▶ The specification for all the externally accessible classes,
methods and so on in a module make up what is called the
API3 of the module – the “Application Programming Interface”.

▶ The name derives from the idea that if we write a re-usable
component of some sort (like a library), then other developers
will want to use this in their application programming, and we
should document the public interface to that component.

▶ (Actually, the other developers might not be writing an
application per se – they might be writing another library – but
the name has stuck.)

3See further “Who invented the API?”,
https://nordicapis.com/who-invented-the-api/

38 / 79

https://nordicapis.com/who-invented-the-api/

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs as contracts

▶ We can think of the API for a function (or other procedural
unit) as constituting a contract between the developer of the
function, and the client code using it.4

▶ In effect, the documentation says “If you, the client code, pass
me arguments which meet the following criteria, I promise to
do the following thing: . . . ”

4See further “Design by contract”,
https://en.wikipedia.org/wiki/Design_by_contract; Meyer, Bertrand. “Applying
‘design by contract’.” Computer 25.10 (1992): 40-51.

39 / 79

https://en.wikipedia.org/wiki/Design_by_contract
http://teaching.csse.uwa.edu.au/units/CITS5501/papers/contract.pdf
http://teaching.csse.uwa.edu.au/units/CITS5501/papers/contract.pdf

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs, cont’d

▶ The “following thing” – the behaviour of the function – will
usually be to return some sort of value, or to cause some sort
of “side effect”.

▶ (A side effect is anything the function does to alter the current
or subsequent behaviour of the system or its interaction with
external systems, other than returning a value.
For example, writing a file to disk, or sending an email, or
changing the value of a global variable.)

40 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

API example

▶ If you have used Java, you most likely at some point will have
written something like System.out.println("some string ...")

▶ What does the println method promise to do?

▶ The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

▶ Does println() return a value? If not, then what does it
promise to do?

41 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

API example

▶ If you have used Java, you most likely at some point will have
written something like System.out.println("some string ...")

▶ What does the println method promise to do?

▶ The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

▶ Does println() return a value? If not, then what does it
promise to do?

41 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

API example

▶ If you have used Java, you most likely at some point will have
written something like System.out.println("some string ...")

▶ What does the println method promise to do?

▶ The Javadoc says:

void println(String x)

Prints a String and then terminate the line.

▶ Does println() return a value? If not, then what does it
promise to do?

41 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

API example

▶ If you have used Java, you most likely at some point will have
written something like System.out.println("some string ...")

▶ What does the println method promise to do?

▶ The Javadoc says:
void println(String x)

Prints a String and then terminate the line.

▶ Does println() return a value? If not, then what does it
promise to do?

41 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

API example

▶ If you have used Java, you most likely at some point will have
written something like System.out.println("some string ...")

▶ What does the println method promise to do?

▶ The Javadoc says:
void println(String x)

Prints a String and then terminate the line.

▶ Does println() return a value? If not, then what does it
promise to do?

41 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs – specification vs implementation

The API documentation does not normally say how the function is
to be implemented – just what its return value and effects are.

This means that if the library developer decides to reimplement the
function in another way (for instance, to improve efficiency), they
can, without changing the API.

(Functions are a form of abstraction. They allow a developer to call
the function, without knowing how it is implemented.)

42 / 79

https://en.wikipedia.org/wiki/Abstraction_(computer_science)

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation example

In fact, you can have multiple implementations of the same API by
different developers.

Example:

▶ Oracle corporation provides an implementation of the Java
standard libraries (as well as of the Java compiler, javac, and
the Java Virtual Machine or JVM).

▶ But there are other implementations – for instance, OpenJDK,
an open-source version of the standard libraries.

▶ These adhere to exactly the same specifications as the Oracle
versions.

▶ (In fact, since Java version 7, the OpenJDK version has been
the reference implementation

43 / 79

https://en.wikipedia.org/wiki/Reference_implementation

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation – other examples

▶ The POSIX standard specifies an API for Unix-like systems,
and has been implemented multiple times in different ways by
different operating systems. (In fact, even Windows, at various
times, has met the POSIX standards.)

44 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation in Java

▶ Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?

▶ A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.

▶ But there’s nothing in the specification to stop us from
implementing it in other ways . . .

▶ e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.5

5See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

45 / 79

https://en.wikipedia.org/wiki/Bogosort

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation in Java

▶ Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?

▶ A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.

▶ But there’s nothing in the specification to stop us from
implementing it in other ways . . .

▶ e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.5

5See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

45 / 79

https://en.wikipedia.org/wiki/Bogosort

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation in Java

▶ Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?

▶ A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.

▶ But there’s nothing in the specification to stop us from
implementing it in other ways . . .

▶ e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.5

5See also Bogosort, https://en.wikipedia.org/wiki/Bogosort

45 / 79

https://en.wikipedia.org/wiki/Bogosort

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation in Java

▶ Q. In Java, does the API tell us how String.indexOf(ch) is
implemented? How would you implement it?

▶ A. It does not. The plausible way to do it is to test each
possible index from 0 to (length-of-string - 1), see if matches
the character we’re looking for, and if it does, return the index
we’re currently at.

▶ But there’s nothing in the specification to stop us from
implementing it in other ways . . .

▶ e.g. Generate a random number from 0 to (length-of-string -
1), call it k. Check and see if we’ve hit all positions from 0 to
k − 1 yet; if we have, and inputString.charAt(k) equals the
character we’re after, return the current index.5

5See also Bogosort, https://en.wikipedia.org/wiki/Bogosort
45 / 79

https://en.wikipedia.org/wiki/Bogosort

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation – “illities”

Sometimes specifications for units will describe not just what the
unit returns or does, but how it does it.

For instance, if we implement String.indexOf(ch) in the “generate
a random number” way we described, it would be extremely slow.

46 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation – “illities”

The specification of String.indexOf(ch) could rule out “silly”
implementations like this, by saying something like “the indexOf

method shall provide guaranteed O(n) time cost, where n is the
length of the string”.

(If you have not done a data structures and algorithms course, don’t
worry too much about what “O(n)” means – it roughly means that
the time to execute indexOf will increase in proportion to the length
of the string.)

47 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Specification vs implementation – “illities”

If you look at the documentation for Java’s TreeMap class, in fact,
you will see that the implementation provided by Oracle promises to
provide guarantees about how long particular methods will take to
run:

This implementation provides guaranteed log(n) time cost
for the containsKey, get, put and remove operations. Algo-
rithms are adaptations of those in Cormen, Leiserson, and
Rivest’s Introduction to Algorithms.

48 / 79

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs, summary

So:

▶ The API describes the expected behaviour of a module (or
larger system).

▶ The code constitutes a particular implementation of that API.

49 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs, cont’d
What should go in the API documentation?

▶ The preconditions – any conditions which should be satisfied by
the parameters or the system state when the function is called.

▶ The postconditions – the return value of the function, and any
changes the function makes to the system state (the “side
effects” discussed earlier)

Sometimes the postconditions will vary, depending on the arguments
passed:

▶ “IF a valid email address is supplied, THEN the
emailMyResignationLetter() method will email a resignation
letter. But if not, then a MalformedEmailAddress exception will
be thrown.”

We need to make sure we cover all circumstances, so that users of
an API will know what to expect. 50 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs, cont’d

If the preconditions are not satisfied, then the behaviour is
undefined. This means the user has failed to live up to their part of
the “bargain”, and has NO guarantees about what the system might
do.

By way of example, we’ll consider Java’s binarySearch method in
java.util.Arrays:

▶ https://docs.oracle.com/javase/7/docs/api/java/util/Arrays
.html#binarySearch(byte%5B%5D,%20byte)

51 / 79

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#binarySearch(byte%5B%5D,%20byte)
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#binarySearch(byte%5B%5D,%20byte)

Testing concepts (cont’d) Testing Documenting code Unit tests

APIs, cont’d

Once we know the preconditions and postconditions for a function,
we can write tests for it.

(They needn’t be spelled out formally or mathematically – but it is
best if they are clear, consistent and unambiguous.)

52 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit tests

53 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit tests

Unit tests should focus on one tiny bit of functionality, and attempt
to find any deviations from expected behaviour.

54 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Desirable properties of unit tests

Ideally, unit tests should be -

▶ quick to run. We want developers to run tests whenever
changes are made to the code, or at least when they are
committed to version control.

▶ independent of other tests. Tests should not rely on other,
particular tests having been run before them.

▶ run frequently. We want to identify faults as early as possible!
▶ Most version control systems make it possible to perform

particular tasks whenever code is committed, using “hooks”
▶ It’s therefore possible to run tests every time code is committed.

(But if tests aren’t quick to run, developers may avoid
committing code regularly.)

55 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

JUnit and xUnit

▶ One of the best-known testing frameworks – originally written
just for running unit tests, but now used for all sorts of other
tests, as well – is JUnit.

▶ JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

▶ The same general framework has been implemented in a huge
array of other languages:

56 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

JUnit and xUnit

▶ One of the best-known testing frameworks – originally written
just for running unit tests, but now used for all sorts of other
tests, as well – is JUnit.

▶ JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

▶ The same general framework has been implemented in a huge
array of other languages:

56 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

JUnit and xUnit

▶ One of the best-known testing frameworks – originally written
just for running unit tests, but now used for all sorts of other
tests, as well – is JUnit.

▶ JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

▶ The same general framework has been implemented in a huge
array of other languages:

56 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

JUnit and xUnit

▶ One of the best-known testing frameworks is JUnit.

▶ JUnit derives from a similar framework developed for Smalltalk
by Kent Beck, named SUnit.

▶ The same general framework has been implemented in a huge
array of other languages:
▶ C# (e.g. NUnit)
▶ Python (e.g. unittest, sometimes called “PyUnit”)
▶ Go (go2xunit)
▶ Haskell (e.g. HUnit)
▶ Lua (e.g. LuaUnit)

▶ Collectively, these frameworks are sometimes referred to as
“xUnit”

57 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit testing – Java example

import static org.junit.Assert.assertEquals;

import org.junit.Test;

// ...

public class CalculatorTest {

@Test

public void evaluatesExpression() {

Calculator calculator = new Calculator();

int sum = calculator.evaluate("1+2+3");

assertEquals(6, sum);

}

}

58 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit testing – Java example

▶ In Java, methods which are intended to be run as tests are
labelled with the annotation org.junit.Test.

▶ The test framework can then be used to run a test.
e.g.

$ java −cp .:junit−4.01.jar org.junit.runner.JUnitCore

CalculatorTest

59 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Unit testing – Python example

▶ Using unittest, classes containing tests inherit from
unittest.TestCase, and methods constituting tests begin with
the letters “test”:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test(self):

self.assertEqual(fun(3), 4)

60 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Testing terminology

test case the basic unit of testing, which checks the observable
behaviour or characteristics of a component or system
in response to a particular set of inputs.
It consists of one particular set of input data, and the
expected output (behaviour).

system under test the component or system being tested, whose
behaviour we want to observe.
Sometime also called the unit under test/UUT (if
we’re doing unit testing), or application under
test/AUT (if we’re doing system-level testing). We’ll
use “subject under test” to refer to any or all of these.
More rarely, you might see it called the “test object”.

61 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Testing terminology

test suite a collection of test cases (or other test suites)

test runner a software tool which manages the execution of tests,
and reports their outcome

test fixture the preparation needed to perform one or more tests

62 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test case
Test case

The basic unit of testing, which checks the observable behaviour or
characteristics of a component or system in response to a particular
set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).

A test case could be testing:

▶ How a method or function behaves when invoked
▶ How two classes interoperate
▶ How an entire system – say, a command-line program –

behaves when run from the command-line
▶ Whether a system meets some criterion for usability.

For each of these – what label might you use to refer to such a test?
63 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases

Test case

The basic unit of testing, which checks the observable behaviour or
characteristics of a component or system in response to a particular
set of inputs.
It consists of one particular set of input data, and the expected
output (behaviour).

Some questions:

▶ If you’re asked to suggest a test case – are you being asked to
write code?

▶ If some Python programmer has written a class which inherits
from unittest.TestCase – does that mean the class represents
exactly one test case?

64 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases vs code

A test case is not code.

If you’re asked to suggest a test case, you’re being asked to describe
(and usually, justify)

▶ a set of inputs which can be supplied to a component or
system, and

▶ the expected output.

65 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Describing test cases

A good way to describe a test case (especially if there are several
test cases you’ll need to describe) is to put it in a table. At a
minimum, you’ll want to write out

▶ SUT: What the system under test (SUT) is6

▶ Input values: What values you supply in order to put the SUT
into an appropriate state, and invoke the desired behaviour

▶ Expected output: What expected behaviour or characteristics
you expect to see (and possibly, what actions and/or
measurements you’ll take in order to observe them).

6Unless there’s only one possible system under test, and/or it’s obvious from
the question

66 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Describing test cases
You’ll see more examples of test case descriptions in the labs.

But by way of example, here’s a test case written out for the Java
CalculatorTest from the previous slides:

Item Details

System under test Calculator class

Input values Construct a Calculator object by invoking
the class constructor with no arguments.
Invoke the evaluate() method of the con-
structed object with the String argument
"1+2+3".

Expected output The evaluate() method should return the
int value 6.

67 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Describing test cases

A test case description like the one shown will be sufficient for most
purposes in this unit.

If you have many tests and want to be able to easily refer to them,
it can also be handy to add a test identifier (a unique ID for each
test) – perhaps something like T001, T002, T003 and so on.

Should you ever need to write up a test plan more formally, then
chapter 11 of the Ammann & Offutt text provides suggestions on
how you might do so.

68 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases vs code
Consider: if some Python programmer has written a class which inherits
from unittest.TestCase – does that mean the class represents exactly one
test case?

No. The programmer could write the following:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test1(self):

self.assertEqual(fun(3), 4)

def test2(self):

self.assertEqual(fun(3), 4)

and that would constitute two test cases (why?).
69 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases vs code

Or they could write this:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test(self):

self.assertEqual(fun(3), 4)

self.assertEqual(fun(4), 5)

70 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases vs code

Or this:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test(self):

self.assertEqual(fun(3), 4)

self.assertEqual(fun(4), 5)

(... hundreds of other assertions follow)

71 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test cases vs code
Or this:

import unittest

def fun(x):

return x + 1

class MyTest(unittest.TestCase):

def test(self):

for i in range(0, 100):

self.assertEqual(fun(i), i+1)

(How many test cases are there in each of these examples? Which of the
examples will be easiest to deal with if an assertion fails? Which will be
easiest to maintain? Why?
We’ll talk more about well- and poorly-written tests later.)

72 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test fixtures

Test fixture

The preparation needed to perform one or more tests.

The idea of a “fixture” comes from testing of hardware – a “fixture”
is everything that holds the piece of hardware in place, and provides
you with known environment and conditions it can be tested in.

Suppose you wanted to test the behaviour of (say) a pressure sensor.
If the air pressure and temperature of your lab were constantly
changing, how would you ever know if the sensor were working
correctly?

73 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test fixtures

▶ For software, we likewise may need to get the environment and
conditions into a known state for testing.

▶ Things we might need to do:
▶ Prepare input data (it may not be just simple numbers or

strings – it could be an MS Word document, say, or some
complex data structure)

▶ Create fake or mock objects (used to deal with dependencies –
more on these later)

▶ Load a database with a specific, known set of data
▶ Create files with known contents
▶ . . . etc.

74 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Test fixtures – example

Suppose we’re doing performance testing of a web site - we start a
server instances going, and send automated requests to it to see
how it performs.

In this situation, the “fixtures” are everything needed so that we can
get the server to respond to the requests.

They could include – the configuration for the server, the commands
to run the server, configuration of a request-sending program,
commands needed to run that program, etc.

75 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Framework features

Most testing frameworks provide the ability to -

▶ collect related tests together (e.g. into suites)
▶ identify and run all unit tests (or suites) in a module, or the

whole system
▶ produce output in different forms (e.g. human-readable text,

XML, HTML)

76 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?

▶ return of a value
▶ alteration of state
▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?
▶ return of a value

▶ alteration of state
▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?
▶ return of a value
▶ alteration of state

▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?
▶ return of a value
▶ alteration of state
▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?
▶ return of a value
▶ alteration of state
▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Expected behaviour

▶ What sort of behaviours might we expect from code under test?
▶ return of a value
▶ alteration of state
▶ throwing of an exception

▶ Basically, the same things that we would document as
postconditions.

▶ Unit testing frameworks will typically provide ways of detecting
all of these, and comparing them with expected results.

77 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

Indicating what the tests are

We need to indicate to the test runner that something is intended to
be a test. Typical ways are:

▶ annotations (example – JUnit 4.x)
▶ inheritance (example – Python unittest)
▶ naming conventions (example – Python unittest, cppunit)

78 / 79

Testing concepts (cont’d) Testing Documenting code Unit tests

References

▶ Bruegge and Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java (Pearson, 2010)

▶ Martin Fowler, “Mocks Aren’t Stubs”
(https://martinfowler.com/articles/mocksArentStubs.html)

▶ Gerard Meszaros, xUnit Test Patterns: Refactoring Test Code
(Addison-Wesley Professional, 2007)

▶ Claessen and Hughes, “QuickCheck: a lightweight tool for
random testing of Haskell programs.” ACM Sigplan Notices
46.4 (2011): 53-64.

▶ Kristopher Sandoval, “Who Invented the API?”, Sept 20 2018
(https://nordicapis.com/who-invented-the-api/).

79 / 79

https://martinfowler.com/articles/mocksArentStubs.html
https://nordicapis.com/who-invented-the-api/

	Testing concepts (cont’d)
	Testing
	Documenting code
	Unit tests

