CITS5501 Software Testing and Quality Assurance
Test Automation

Unit coordinator: Arran Stewart

1/71

» We looked at testing concepts — failures, faults/defects,
invariants, and erroneous/inconsistent runtime states

> We looked at specifications and APIs — these help us answer
the question, “How do we know what to test against?”
i.e., What is the correct behaviour for some piece of software?

> We have discussed what unit tests are, and what they look like

2/71

Questions

| 2
>
| 2
>
>
>

What's the structure of a test?

How do different types of test relate?

How do we come up with tests?

How do we know when we have enough tests?

What are typical patterns and techniques when writing tests?
How do we deal with difficult-to-test software?

(e.g. software components with many dependencies)

» What sorts of things can be tested?

3/71

Questions

> What's the structure of a test? J

Any test can be seen, roughly, as asking: “When set up
appropriately — if the system (or some part of it) is asked to do X,
does its actual behaviour match the expected behaviour?”

4/71

Test structure

Drilling down a little more into what this means, a test case needs
to do the following three things:

1. Prepare the system (and/or an appropriate environment) so
that it's in a suitable state for us to invoke some behaviour.

2. Invoke the desired behaviour.

3. Work out whether the system did what we expected it to.

Sometimes each of these will be very simple; sometimes they're very
complex.

5/71

Test structure

If your test is going to be implemented as code, it's often helpful do
each of the three things we mentioned in exactly the order given. If
you do so, then you're following the Arrange—Act—Assert pattern

for writing tests.
Arrange Set up an appropriate environment
Act Invoke the desired behaviour

Assert Work out what the observed behaviour was, and check
whether it's the same as the expected behaviour.

6/71

Test patterns — example 1

Let's consider the JUnit test we saw in the previous lecture:

public class CalculatorTest {
@Test
public void evaluatesExpression() {
Calculator calculator = new Calculator();
int sum = calculator.evaluate("1+2+3");
assertEquals(6, sum);

O~NOOT P~ W

7/71

Test structure — example 1

public class CalculatorTest {
@Test
public void evaluatesExpression() {
Calculator calculator = new Calculator();
int sum = calculator.evaluate("1+2+3");
assertEquals(6, sum);
}
}

O~NOOTAWN

> We arrange in line 4 — we invoke the constructor
(“new Calculator()") so we've got an object to operate on.

» We act in line 5 — we invoke the evaluate() method of the object we
constructed, and pass that method the string "1+2+3".

> We assert in line 6 — we check that result we got (sum) equals the
result we expected (6).

8/71

More complex “assertions”

In the code examples we've seen, it's very simple to check whether
the observed behaviour matches the expected behaviour.

All we expected the method under test to do was return a value —
and it's very simple to check whether that value is what we
expected.

But what if the specification for the evaluate() method said that
the result shouldn't be returned, but rather written to a file called
“myresult.txt”?

How can we tell if the test passed or failed?

We'd need to run extra methods to open that file, read its contents,
and check that the contents was what we expected. All this would
be part of the “assertion” stage.

9/71

Ammann and Offutt textbook terminology

The Ammann and Offutt textbook divides the structure of tests up
a bit differently.

For reference, it considers a test to consist of:

P Test values: anything required to set up a system or
component, “ask it do” something, observe the result, and
clean up the system so as to put it back in a stable state.

> Expected values: what the system is expected to do.

“Values" is being used in a very broad sense. Suppose we are
designing system tests for a phone — then the “test values”" might
include, in some cases, physical actions to be done by a tester to
put the phone in a particular state (e.g. powered on and with the
“Contacts” list displayed).

10/71

Ammann and Offutt textbook terminology

The textbook goes into quite a bit of detail about particular sorts of
test values.

For instance:

> “prefix values” (which largely correspond to things we do in the
“Arrange” part of a test to set up test fixtures)

> ‘“verification values" (things we need to do in order to observe
or measure the behaviour of a system or component — running
a database query, perhaps)

> “exit values" (things we need to do in order to reset or “tear
down" our fixtures, and put the system back into a stable state
again).

For the most part, we will not need to make use of this terminology.

11/71

Cleaning up/"“teardown” methods

Ammann and Offutt’s "exit values” don't really correspond to
anything in the “Arrange—Act—Assert” pattern.

If we need to do any sort of “cleanup” after a test, we would just do
it after the "Assert” stage.

If we have multiple tests that all require the same cleanup steps
(deleting files or resetting a database to a known state), it would be
poor programming style to copy and paste the same cleanup code
again and again. (Why?)

Instead, most test frameworks give us a way of specifying bits of
code — often called “teardown methods” — that should be run after
each test in some test suite.

We'll see examples of these later.

12/71

Test structure — example 2

Tests need not always be implemented as code.

For instance, we might want to test whether a whole travel booking
system is “easily usable” (perhaps as part of an acceptance test).

Let’s suppose the relevant system requirement is:

“Travel agents shall be able to use all the system functions
after successful completion of a training course designed by the
software provider. After this training, the average number of

errors made by experienced users shall not exceed two per hour
of system use.”

When we document our test, our “input values” might be everything we
need to do to get trial versions of the system set up on the customer’s

premises, and have the system up and available for trial use by a selection
of travel agents.

13/71

Test structure — example 2

In how much detail do we document these “input values”? It
depends on the situation. If a lot is at stake, we might document all
the actions/inputs, and what preparation is needed, and what things
the customer needs to be provide, in great detail. For a small
system, if less is at stake, less detail as needed.

(We give sufficient detail to reduce the risk of things going wrong to
an acceptable level — more on this in the lecture on risk.)

14/71

Test structure — example 2

What are the “expected values” in this scenario?

It's the number of errors per user not exceeding two per hour of
system use.

15/71

Questions

» How do different sorts of tests relate?

A common way of thinking about the way tests relate is to think of them as forming a

“test pyramid":!

more
integration
Integration tests
less Unit tests
integration

slower

faster

1Adapted from Ham Vocke, “The Practical Test Pyramid”, which is adapted from

Mike Cohn (2009) Succeeding with Agile.

16/71

https://martinfowler.com/articles/practical-test-pyramid.html

How tests relate

more
. . slower
integration
Integration tests
less Unit tests
integration faster

(Different authors might put other tests in the top level, instead or as well — for
instance, Ul tests and end-to-end tests.

Or might add a higher level still, for client acceptance tests or manually run tests.)

17/71

How tests relate

> Unit tests are at the bottom of the hierarchy, and directly test
small parts of the system created during system
implementation.

They should have the properties we said all good unit tests

should have (independent, quick to run), and should be run
frequently as a project progresses. (e.g. for every change we
make to a class)

18/71

How tests relate

> Integration tests are in the middle of the hierarchy. They test
whether two or more components interoperate properly.

They focus on the flow of data and/or control between
components, and often will test for properties implied by the
system design.

They often are run less frequently than unit tests — e.g. if a
unit is being changed, we might run integration tests once the
unit tests are passing.

> Higher-level tests — system tests and subsystem tests of various
sorts, perhaps including acceptance tests — usually take more
effort to set up, and are run fewer times (perhaps just once, in
the case of acceptance tests).

19/71

Questions

» How do we come up with tests?
» How do we know when we have enough tests?

Both of these are covered in the next few lectures. We look at ways
of grouping together different sorts of input so that we don't need
to test exhaustively, and at ways of working out how much of the

system we have tested (and ought to test).

20/71

Coming up with tests

In brief, we come up with tests by looking at requirements and
specifications, and thinking about the system — modelling it — in
different ways.

21/71

Coming up with tests

Consider an Internet-connected toaster.

At a high level, the system level, we can look at the system in a few
different ways, depending on what part of the system requirements
and specification we're trying to test.

Sometimes, it'll be useful to think of the system as a function —
something that takes stuff in (parameters and state) and spits
something out (a return value, and/or a new state).

e.g. We can think of a toaster as taking bread (or crumpets, or
muffins, or other bread products) and control settings in, and
spitting something out (toast).

22/71

Coming up with tests

But we also might have some kind of use-case for how the toaster
should be used:

Scenario: User is in the toaster’s physical location

1.
2.

User inserts a bread product.

System detects product composition, and prompts user for a
toastiness level.

User enters toastiness level.

If the user makes an error, an error message is displayed and
step 2 is repeated.

System toasts the bread product.

When system detects the desired toastiness level has been
achieved, heat is turned off and a klaxon is sounded.

23/71

Coming up with tests

Use cases can be thought of as graphs — steps, and links between
steps — and this way of thinking can help us come up with tests
(and decide if we've tested enough).

Other aspects of the system can be thought of as logic expressions
and as grammars or syntaxes.

Pretty much any aspect of the system we're interested in can be
thought of in one of these ways (as a function, a graph, a [set of]
logic expressions, or a grammar).

More on this in later lectures.

24 /71

Questions

» What are typical patterns and techniques when writing tests? J

We look at data-driven tests (running “the same” test, but on
different sets of input and expected output), and property-based
tests (testing invariant properties of code or data).

25/71

Questions

» How do we deal with difficult-to-test software?
(e.g. software components with many dependencies)

We saw that unit tests should test things in isolation — what if
something is hard to isolate?

(e.g. it uses a database)

We discuss the use of mocks to handle this.

26/71

Questions

» What sorts of things can be tested? J

Not just the modules in your code!

We can also test examples and code fragments appearing in
documents (e.g. user manuals), APl documentation, and provided
as example programs.

27 /71

Coming up

> Testing is all about running software to see how it behaves.

> Static analysis of software consists of any way of inspecting or

analysing software (or some other static artifact) without
running it.

> We will look at:

> Inspections (analysis by humans)
> Static analysis and (late in the course) formal methods

28/71

Coming up

» Then we will consider software quality more broadly (looking at
processes and standards).

29/71

Test automation
000000000000 000000000000000000000000000000

Test automation

30/71

Test automation
0000000000000 00000000000000000000000000000

Testing frameworks

> Besides the fact that we can use them for unit tests, JUnit and
the other xUnit frameworks are good examples of testing
frameworks, or test automation frameworks —

software which controls the execution of tests, compares actual
outcomes to predicted outcomes, sets up test fixtures, and
reports results.

31/71

Test automation
00@0000000000000000O00000000000000000000000

Testing frameworks

> Note that testing frameworks like JUnit or Pyunit are just one
sort of test automation tool.

> Test automation could be something as simple as a script
which, once a day, compiles my team’s project and sends an
email to me if there are compilation errors.

> In general, if some sort of testing can be automated — run
without human intervention — then we should do so.

> We can imagine for unit tests, that we could have a person
manually running each test and recording the outcome — but
that is slow, subject to human error, and quickly becomes
infeasible.

32/71

Test automation
000000000000 000000000000000000000000000000

Testing frameworks

Some sorts of testing and QA activity can’'t be automated (... yet).

> A final system test for (say) a mobile phone might involve
actually setting up and performing tasks with a real phone.

> Assessing the usability of an interface typically, how quickly a
user can find and navigate to a particular item, can’t be
automated.

But what we can automate, we do — this helps reduce cost and
improve the reliability of our testing.

The easier tests are to run, the more likely that they will be run,
and the fewer ‘manual handling’ steps, the less chance for error.

33/71

Test automation
000000000000 000000000000000000000000000000

Testing frameworks

So, why do test automation?

> Reduces cost

» Reduces human error

> Reduces variance in test quality from different individuals
> Significantly reduces the cost of regression testing

34/71

Test automation
00000e000000000000000000000000000000000000

Testing framework definitions

A few definitions relevant to testing frameworks:
Software Testability

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met

> how hard it is to find faults in the software

> Testability is determined by two practical problems
» How to provide the test values to the software
> How to observe the results of test execution

35/71

Test automation
000000800000 000000000000000000000000000000

Testing framework definitions

Observability and Controllability

How easy it is to observe the behavior of a program in terms of its
outputs, effects on the environment and other hardware and
software components

How easy it is to provide a program with the needed inputs, in
terms of values, operations, and behaviors

> Observability
> Software that affects hardware devices, databases, or remote
files have low observability
> Controllability
> Easy to control software with inputs from keyboards
> Inputs from hardware sensors or distributed software is harder

> Some systems are very easy to observe and control, others less

SO.
36/71

Test automation
0000000 e0000000000000000000000000000000000

Test fixtures

> Recall that test fixtures are things we need in order to get the
system into a known state, ready for a test
> Often, multiple tests will share some requirements for what
environment needs to be set up
> A typical approach in object-oriented languages is to group
tests with shared fixture requirements into the same class
> And then to specify “setup” and “tear-down" methods for the
class, which will be run before and after each test, respectively.
> Shared objects will be declared as instance variables

37/71

Test automation
00000000 e000000000000000000000000000000000

Test fixtures

class TestArithmeticOperations {
Calculator myCalculator;

@Override // This is run before each test method

protected void setUp() throws Exception {
System.out.println("Setting things up!");
myCalculator = new Calculator();

@Override // This is run after each test method

protected void tearDown() throws Exception {
System.out.println("Running tearDown");
myCalculator = null;
assertNull(myCalculator);

@Test
void testl() {
/7 ...

38/71

Test automation

000000000 e0000000000O00000000O0000000000000

Fixtures in Python

import unittest

class FixturesTest(unittest.TestCase):

def

def

def

setUp(self):
print('In setUp()"')
self.fixture = range(1l, 10)

tearDown(self):
print('In tearDown()")
del self.fixture

test(self):
print('in test()')
self.assertEqual(self.fixture, range(l, 10))

if __name__ == '__main__":
unittest.main()

39/71

Test automation
000000000 0@0000000000000000000000000000000

Some assertion methods

Common assertions

assertTrue(x, msg=None)
assertFalse(x, msg=None)
assertIsNone(x, msg=None)
assertIsNotNone(x, msg=None)
assertEqual(a, b, msg=None)
assertNotEqual(a, b, msg=None)
assertlIs(a, b, msg=None)
assertIsNot(a, b, msg=None)
assertIn(a, b, msg=None)
assertNotIn(a, b, msg=None)
assertIsInstance(a, b, msg=None)
assertNotIsInstance(a, b, msg=None)

40/71

Test automation
00000000000 @000000000000000000000000000000

More assertion methods

Other assertions

assertAlmostEqual(a, b, places=7, msg=None, delta=None)
assertNotAlmostEqual(a, b, places=7, msg=None, delta=None)
assertGreater(a, b, msg=None)

assertGreaterEqual(a, b, msg=None)

assertLess(a, b, msg=None)

assertLessEqual(a, b, msg=None)

assertRegex(text, regexp, msg=None)

assertNotRegex(text, regexp, msg=None)

assertCountEqual(a, b, msg=None)

assertMultilineEqual(a, b, msg=None)
assertSequenceEqual(a, b, msg=None)

assertListEqual(a, b, msg=None)

assertTupleEqual(a, b, msg=None)

assertDictEqual(a, b, msg=None)

41/71

Test automation
000000000000 e00000000000000000000000000000

How to use assertion methods — some tips

> In JUnit, the parameter order for assertions is: expected value,
then actual value, then message. (Hover over the assertion
method in your IDE to see the JavaDoc tooltip.)

> It's good practice to give a message, and will be worth marks
in assessments.

> In JUnit, the assertions are overloaded so as to apply to any of
the primitive types, any of the array types, and anything
inheriting from Object (i.e., any reference type)

> Reference types need a sensible .equals() method in order for
equality tests to work. Most classes will already have an
.equals() method, but if you write your own classes, you'll
need to implement one.

> When comparing aggregate types like arrays or containers —
don't loop over them and compare individual elements, just
compare the aggregate types directly.

2/71

Test automation
0000000000000 @0000000000000000000000000000

Structuring test code

> As with any software system, we want to factor out common
code —
an example:

knownValues = (('lego', False),('radar', True)
...

for word, palin in self.knownValues:
result = is_palindrome(word)
self.assertEqual(result, palin)

> Follow the “DRY" principle - Do not Repeat Yourself
> Question: what constitutes a “test case”, in this code?

> This style of test is sometimes called a “data-driven unit test”
43/71

Test automation
0000000000000 0e000000000000000000000000000

Data-driven unit tests

> Problem: Testing a function multiple times with similar values
> How to avoid test code bloat?

> Simple example: Adding two numbers
> Adding a given pair of numbers is just like adding any other pair
> You really only want to write one test

> Data-driven unit tests call constructor for each logical set of

data values
> Same tests are then run on each set of data values

44/71

Test automation
000000000000 000@00000000000000000000000000

Structuring test code

> More broadly, how test cases are structured will depend
somewhat on the conventions of the language and the
framework being used.
> in Java, typical to put source code in a directory called “src”,
and have a separate directory (e.g “test”) for unit tests, with
structure mirroring the main code.
> in Python, most tests are put into a separate module.

45/71

Test automation
000000000000 0000e0000000000000000000000000

Doubles

P Actors use doubles to replace them during certain scenes
> Dangerous or athletic scenes
> Skills the actor doesn’t have, like dancing or singing

> Test doubles replace software components that cannot be used
during testing

46 /71

Test automation
000000000000 00000e000000000000000000000000

Reasons for Test Doubles

> Component has not been written

P The real component does something destructive that we want
to avoid during testing (unrecoverable actions)

> The real component interacts with an unreliable resource

» The real component runs very slowly

P The real component creates a test cycle
> A depends on B, B depends on C, C depends on A

A test double is a software component that implements partial
functionality to be used during testing

47/71

Test automation
000000000000 000000e00000000000000000000000

Dependencies

> Very often, a class or function is not designed to work on its
own, but in combination with other classes or functions -

e.g. an AddressBook class may make use of a Contact class
P or with other subsystems, or external systems:

> dependency on a database for an HR system
> dependency on a network, for an Internet chat system
> dependency on particular hardware devices

» How do we deal with these?

48/71

Test automation
000000000000 0000000e0000000000000000000000

Mocks, stubs and more

> Often, we'll use objects or function that mimic other ones for
testing purposes. There does not seem to be any universally
accepted term for these, but one author (Gerard Meszaros)
uses the generic term “Test Double”.

> Specific sorts of Test Double -

» Dummy objects
> Fake objects
> Stubs
> Spies
> Mocks

[Fowler, in e.g. “Mocks Aren't Stubs”, uses Meszaros's terminology.]

49/71

Test automation
000000000000 00000000e000000000000000000000

Dummy objects

P These are objects that are passed around but not used — for
instance, they may be used to fill parameter lists (in statically

typed languages).
> In languages with a null, Nil or undefined value, we might be

able to use that value
(which also serves to document the fact that we don't care

what it is)

50 /71

Test automation
000000000000 000000000e00000000000000000000

Fake objects

> Fake objects actually do have working implementations, but for
some reason are not suitable for production

» An example of this is when we use an in-memory database,
instead of an on-disk database

51/71

Test automation
000000000000 0000000000e0000000000000000000

Stubs

» Stubs (often, “stub methods") provide canned answers to calls
made during the test —

i.e., the answers are usually fixed, and don't change in response
to the parameters passed

52/71

Test automation
0000000000000 0000000000e000000000000000000

Spies

P These are stubs that record information on how they were
called.

» These are particularly useful for testing code that calls (e.g.)

an object representing a server, such as a mail server, or which
writes to a file-like object.

53/71

Test automation
000000000000 000000000000e00000000000000000

Spies — example

> In Java, we often write to files (or network sockets) using
classes like Bufferedwriter

> If we want to verify, in some unit test, what is written, we
could use a “Spy"” class that implements the java.io.Writer
class — but instead of writing to a file, it records whatever data
would have been written

> In Python, we do not have static types, and any class with a
“write()" method suffices.

> Making our code agnostic about what sort of thing it is writing
to has the benefit that if we do decide to change it at a later
date, we don't have to revise our tests

54/71

Test automation
000000000000 0000000000000e0000000000000000

Mocks

P> Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

55/71

Test automation
000000000000 0000000000000e0000000000000000

Mocks

P> Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

> Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

55/71

Test automation
000000000000 0000000000000e0000000000000000

Mocks

P> Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

> Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

> For instance:

55/71

Test automation
000000000000 0000000000000e0000000000000000

Mocks

P> Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

> Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

> For instance:

> Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().

55/71

Test automation
000000000000 0000000000000e0000000000000000

Mocks

P> Mock object are pre-programmed to expect particular calls, and
respond with particular behaviour.

> Unlike the other types of test double, mock objects can verify
things about the behaviour of a class.

> For instance:

> Suppose our code uses a database; we know that to work
correctly, it must call the connect() method of a database
object, and can then call the query() method;
but it is an error to call query() before connect().

» Qur mock object can contain code that checks whether query()
has been called before connect ()

55/71

Test automation
000000000000 00000000000000e000000000000000

Mocks — another example

> We might have a order fulfilment system that is supposed to
send an email when (for some reason) an order can't be
fulfilled.

> The class that handles sending emails may need particular
methods to be called, in a particular order;
we can write a mock that tests that they are called in the right
way.

56/71

Test automation
000000000000 0000000O00000000e00000000000000

Mocks in Python

> Python has the standard library unittest.mock
> MagicMock() lets us create methods that return specific results,
or expect to be called a particular way, on the fly.

> from unittest.mock import x
> mock = MagicMock()

57/71

Test automation
0000000000000 000000000000000e0000000000000

Mocks in Python (2)

> Once we have called our mock() object, the fact that it has
been called is recorded.

» We then (before the test ends) assert what we expect to have
happened
(e.g. that the method was called)

> If not, then an exception will be raised.

» Much more complex behaviour can be created — check the API
for details.

58/71

Test automation
000000000000 00000000000000000e000000000000

Testable documentation

> We have said that sometimes, tests are the best documentation
of an API (since documentation often gets out of date)

> Testable documentation frameworks ensure that documentation
is kept up to date with code — tests are generated from the
documentation of an API.

» One example, from the Python language, is the doctest library.

> A good API will often give examples of how methods are
functions should be called, and the Python doctest module
allows these examples to be extracted and run as tests.

59/71

Test automation
000000000000 000000000000000000e00000000000

Testable documentation vs unit testing

> The purpose of these is to ensure that the documentation
examples are still correct.

> This is not the same as unit testing — doctests will usually only
exercise a small number of examples, and are not nearly as
thorough as unit tests should be.

60/71

Test automation
000000000000 0000000O000000000000e0000000000

Doctest example

def square(x):
"""Return the square of x.

>>> square(2)
4

>>> square(—2)
4

return x *x X

if __name__ == '__main__"':
import doctest
doctest.testmod()

61/71

Test automation
000000000000 0000000O0000000000000e000000000

Doctest in other languages

> Like xUnit, doctest has been ported to a great many other

languages.
(An encouraging feature of testing techniques is that they tend

to be widely adopted if they work well.)

62/71

Test automation
000000000000 0000000O0000000000000e000000000

Doctest in other languages

> Like xUnit, doctest has been ported to a great many other

languages.
(An encouraging feature of testing techniques is that they tend

to be widely adopted if they work well.)

» Java has JDoctest

62/71

Test automation
000000000000 0000000O0000000000000e000000000

Doctest in other languages

> Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

> Java has JDoctest
> Haskell has a package simply called doctest

62/71

Test automation
000000000000 0000000O0000000000000e000000000

Doctest in other languages

> Like xUnit, doctest has been ported to a great many other
languages.
(An encouraging feature of testing techniques is that they tend
to be widely adopted if they work well.)

> Java has JDoctest
> Haskell has a package simply called doctest
» Ruby has rdoctest

62/71

Test automation
000000000000 0000000O00000000000000e00000000

Property-based testing

> This sort of testing originates from the Haskell testing
framework QuickCheck, and is sometimes called generative
testing

63/71

Test automation
000000000000 0000000O00000000000000e00000000

Property-based testing

> This sort of testing originates from the Haskell testing
framework QuickCheck, and is sometimes called generative
testing

» Our tests are of the form:

for all data or parameters that are generated in a particular way,
the function or method should produce the following results.

63/71

Test automation
000000000000 0000000O000O000000000000e0000000

Simple example

> The “tail” function, applied to a list, returns everything but the
first element —
what invariants hold?

64/71

Test automation
000000000000 0000000O000O000000000000e0000000

Simple example

> The “tail” function, applied to a list, returns everything but the
first element —
what invariants hold?

» We know that if tail is called on a non-empty list, the length of
the result is one less than the length of the list passed in.

64/71

Test automation
000000000000 0000000O0000000000000000e000000

Use for interfaces and sub-classes

> This can be particularly useful when testing interfaces and
subclasses

65/71

Test automation
000000000000 0000000O0000000000000000e000000

Use for interfaces and sub-classes

> This can be particularly useful when testing interfaces and
subclasses

» Our documentation states that all subclasses of a class should
maintain some invariant;
the property-based test checks whether it can find
counterexamples.

65/71

Test automation
000000000000 0000000O000O00000000000000e00000

Summary of test types so far

Unit tests provide a way of identifying ways in which a software
component deviates from its specification.

Test doubles provide a way of testing a unit of code, even when it
depends on other code.

Testable documentation provides a way of testing examples written
in the documentation for a system, and making sure they still hold.

Property-based testing provides a way of finding counterexamples to
any invariants we think should hold about a software component.

66/71

Test automation
000000000000 0000000O000O000000000000000e0000

A wrinkle — user expectations

> In some cases, software may perform according to its
specification, but still violate user expectations.

> For instance, users may expect a GUI system or mobile app to
conform with the behaviour of familiar applications -
or may expect that a system will not do something (e.g.,
transmit their data to a third party)

> These are not faults, per se — but they can be just as important
for software quality.

67 /71

Test automation
000000000000 0000000O000O0000000000000000e000

Testing as a way of improving reliability

> Testing is one way of improving the reliability of a system. It
aims to detect faults that have already found their way into a
system.

> In general, techniques for improving reliability fall into three
categories:

> Fault avoidance — try to prevent faults from ever being
introduced into the system

> Fault detection — try to detect faults that have found their way
into the system

> Fault tolerance — incorporate ways of recovering from faults in
the system at runtime.

68/71

Test automation
000000000000 0000000O000O00000000000000000e00

Examples of improving reliability

> Fault avoidance — we can try to avoid introducing faults by our
use of particular development methodologies, by statically
analysing the system design, and through the use of formal
methods.

> Fault detection — we can try to detect failures, and use
debugging and testing to identify the causes (the faults) that
result in those failures.

> Fault tolerance — we can introduce redundancy into the system.
For instance, the Airbus flight control system actually contains
multiple systems, and control switches to a backup if one
becomes unavailable.
(Query — what sort of faults will this guard against? What sort
might it not?)

69/71

Test automation
000000000000 0000000O000O000000000000000000e0

Next

> Next question - what test values to use, what test cases to
write?
> This is test design ...

70/71

Test automation
000000000000 0000000O000O0000000000000000000e

References

> Cohn, Mike. Succeeding with Agile: Software Development
Using Scrum. Upper Saddle River, NJ: Addison-Wesley
Professional, 2009.

> Vocke, Ham. “The Practical Test Pyramid.” MartinFowler.com.
February 26, 2018. https:
/ /martinfowler.com/articles/practical-test-pyramid.html.

71/71

https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html

	Test automation

