
CITS5501 Software Testing and Quality Assurance
Exceptions and where to throw them

Unit coordinator: Arran Stewart

1 / 18

Overview

This lecture contains a very brief overview of when and how we
should throw exceptions.

Some of it you should already be familiar with from previous units
that covered object-oriented programming.

2 / 18

Off the “happy path”
When we write or use a method or function, there’s often a “typical” or
“normal” or most likely case that can occur.

For instance, consider code for opening a file and reading a text file in
Java:

import java.nio.file.Files;

import java.nio.charset.StandardCharsets;

// ...

List<String> lines = Files.readAllLines("myfile.txt",

StandardCharsets.UTF_8);

The “typical” case is that the file "myfile.txt" exists, and we have
permission to read it, so a list of lines will be returned.

3 / 18

Off the “happy path”

But it’s very easy to predict that in some cases, the file won’t be
there, or we won’t have permission to read it. Java uses the
IOException class to inform the caller about these situations:

public static List<String> readAllLines(Path path, Charset cs)

throws IOException

But they’re such common and predictable situations that arguably,
they’re not very “exceptional”. So maybe we shouldn’t be using
exceptions to inform the caller about them at all.

4 / 18

Languages without exceptions

In fact some languages (like Rust), exceptions don’t even exist, and
the return type of a function like readAllLines would be more like:

EITHER a list of lines OR an IOError

But Java doesn’t support an “either” type like this, so we must
make do with exceptions.

5 / 18

Off the “happy path”

So this is one case where we use exceptions: to inform the caller of
a method or function about a perfectly predictable circumstance. If
such circumstances arise, they don’t indicate a logic error or other
problem with the calling code.

(Python does this a lot – every time you iterate over a list, under
the hood, Python excepts the list to throw a StopIteration

exception when the end of the list is reached.)

6 / 18

Off the “happy path”

When we throw exceptions to inform the caller about some circumstance,
those exceptions and the exact situations in which they will be thrown
should be properly documented, so the caller knows what kind of
situations can occur and handle them all.

Easily predictable situations that are off the “happy path”

▶ Throw an exception (if that’s the idiom for the language you’re
working in) to inform the caller

▶ Document what exceptions are thrown and when. These form part of
the postconditions
▶ i.e. “IF situation X arises, we promise to throw an exception of

type Y”
▶ Since they form part of the postconditions, they are expected

behaviour, and tests should ensure the method throws them when
appropriate

7 / 18

Unfixable situations

Sometimes, situations will arise where a system cannot continue
normal operation, and also can’t reasonably do anything to fix the
situation.

In Java, these situations are indicated using the Error class. As per
that class’s documentation:

An Error is a subclass of Throwable that indicates serious
problems that a reasonable application should not try to
catch. Most such errors are abnormal conditions. The
ThreadDeath error, though a “normal” condition, is also a
subclass of Error because most applications should not try
to catch it.

8 / 18

https://docs.oracle.com/javase/7/docs/api/java/lang/Error.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Error.html

Unfixable situations

Examples of Errors in Java include VirtualMachineError (the Java VM
has run out of resources, or its state has become corrupt).

In general, we should not try and catch these (since there’s nothing we can
do to the fix them), and often it’s not possible to predict when they might
arise. (We certainly shouldn’t throw them ourselves; that’s the JVM’s job.)

Unfixable situations

▶ It’s not our job to throw these (but do check out the Java assert
statement, which lets us document invariants and indirectly could
throw them)

▶ We shouldn’t try to catch them
▶ Since we generally can’t predict them, there’s no point documenting

them in our methods (how could we know they’d be thrown?)
▶ All we can reasonably do is let the program abort execution
▶ Such errors don’t form part of the expected behaviour of the system

9 / 18

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Unfixable situations – a footnote

As a footnote – sometimes we may be working on platforms with
constrained resources,1 or on a hard real-time system.

In those situations, it might be reasonable to do something with
these sorts of errors (or we might be able to better predict when
they could arise).

But such platforms are out of the scope of this unit; if you’re ever
working on one of them, you should consult the documentation and
industry best practices for how to deal with these sorts of errors.

1For instance, JavaCard, a version of the JVM designed to be run on smart
cards.

10 / 18

https://en.wikipedia.org/wiki/Java_Card

Other situations

So we’ve seen we could have

▶ perfectly predictable but atypical situations
▶ we should throw exceptions to inform the caller
▶ we should document the exceptions and write tests to ensure

they’re thrown when they should be
▶ unfixable situations

▶ it’s not our job to throw or catch these

But there are a few situations that do fall outside of these two
categories.

11 / 18

Preconditions

What if we write a Date class with the following constructor:

/** Creates a Date which represents a date in the proleptic

* Gregorian calendar on or after 1st January, 1 CE.

*

* @param year The year, which must be greater than 0

* @param month The month, which must be in the range 1−12

* inclusive

* @param day The day of the month, a number between 1−31

* inclusive;

* it must be less than or equal to the number of days in

* <pre>month</pre>.

*/

public Date(int year, int month, int day)

12 / 18

Preconditions

/** Creates a Date which represents a date in the proleptic

* Gregorian calendar on or after 1st January, 1 CE.

*

* @param year The year, which must be greater than 0

* @param month The month, which must be in the range 1−12

* inclusive

* @param day The day of the month, a number between 1−31

* inclusive;

* it must be less than or equal to the number of days in

* <pre>month</pre>.

*/

public Date(int year, int month, int day)

There are preconditions for this constructor, because not all possible
values of year, month and day make sense.

Suppose a caller breaches the preconditions; should we throw an
exception?

13 / 18

Preconditions

The answer is “It depends”.

We know that we don’t have to throw an exception – if the caller
breaches the preconditions, it’s their own fault and they deserve
whatever happens.

But should we check, and throw one anyway?

(Note that if we do throw an exception, we don’t have to document
it, either. And also note that this isn’t an “atypical but expected
case”; if the caller passes in invalid values, there’s some sort of logic
error in their code.)

14 / 18

Preconditions

We could add a Java assert statement to our constructor code:

public Date(int year, int month, int day) {

assert isValidCombination(year, month, day);

// ...

We define a helper method to check whether the parameters
supplied form a valid combination for a Date, and we assert that
the combination is indeed valid.

15 / 18

assert statements

public Date(int year, int month, int day) {

assert isValidCombination(year, month, day);

// ...

In Python, C++ and many other languages, this would be the best
solution. We assert things that should be true; if they aren’t,
there’s some sort of logic error in the (callers’ or our) code.

An AssertionError gets thrown, and execution of our program
aborts (which is usually the best thing to do, if we’ve entered an
erroneous state).

16 / 18

assert in Java

Unfortunately, by default in Java, assert statements have no effect
– it’s necessary to pass the -ea or -enableassertions flags to the
JVM for them to do anything.

If we’re writing a library, we can’t know whether -ea was passed.

So to get around this limitation of the language, we might decide to
throw an exception of our own.

This is acceptable. Assertions would be better, but since they don’t
work reliably, throwing an exception halts execution of the program
and prevents any inconsistent state from spreading further.

Question: should we test our code to ensure the exception is
thrown when invalid arguments are supplied?

17 / 18

Other things that we could do

Here are a few other things we might do some (or multiple of) when
encountering an exceptional situation we can’t handle:

▶ do nothing
▶ log a warning or error message
▶ abort execution by calling System.exit(), allowing cleanup of

resources
▶ send the JVM a SIGKILL signal,2 which cannot be handled or

ignored, and results in immediate termination of all threads,
with no cleanup actions executed

Which of them do you think would be best, and under what
circumstances?

2See Roel van de Paar, “How Linux Signals Work: SIGINT, SIGTERM, and
SIGKILL”.

18 / 18

https://www.howtogeek.com/devops/linux-signals-hacks-definition-and-more/
https://www.howtogeek.com/devops/linux-signals-hacks-definition-and-more/

