
Input Space Partitioning

CITS5501 Software Testing and Quality Assurance
Input Space Partition Testing

Unit coordinator: Arran Stewart

1 / 26

Input Space Partitioning

Highlights

▶ How we choose values for tests
▶ Approaches to testing
▶ Model-based testing
▶ Input space partitioning

2 / 26

Input Space Partitioning

Input Space Partitioning

3 / 26

Input Space Partitioning

Preliminaries

Preliminaries

4 / 26

Input Space Partitioning

Preliminaries

Problem – choosing test values

Suppose we have some Java method we want to test:
/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

▶ What tests should we write?

▶ When can we stop writing tests?

5 / 26

Input Space Partitioning

Preliminaries

Problem – choosing test values

Suppose we have some Java method we want to test:
/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

▶ What tests should we write?

▶ When can we stop writing tests?

5 / 26

Input Space Partitioning

Preliminaries

Function-like things

The technique of Input Space Partitioning (ISP) helps us answer
these questions.

If something we are trying to test can be modelled as a
mathematical function, then we can apply the ISP technique to
devise tests for it (and to check how thorough our testing currently
is).

Before we use it, we’ll go through a few mathematical preliminaries.

6 / 26

Input Space Partitioning

Preliminaries

Functions – abs

In mathematics, a function is a mapping from one set (called the
domain) to another (called the codomain).

For example, the function abs gives the absolute value of an
integer.1 Its domain is the integers, and its codomain is the
non-negative integers.

abs(n) =
{

n when n ≥ 0
−n when n < 0

1Actually, we could think of abs as being a family of functions. Another
member of the family maps from real numbers to non-negative reals.

7 / 26

Input Space Partitioning

Preliminaries

java.lang.Math.abs

abs(n) =
{

n when n ≥ 0
−n when n < 0

Java has a method java.lang.Math.abs with signature

int abs(int a);

which is intended to implement that mathematical function (though
for a smaller range of possible inputs).

8 / 26

Input Space Partitioning

Preliminaries

Functions

If we want to indicate the domain and codomain of a function, we
do it like this:2

abs : Z → Z≥0

2Hopefully you’re familiar with standard mathematical notation for sets like
the integers, rational numbers and reals. Z is from the German word “Zahlen”,
meaning “numbers” (German mathematicians were responsible for formalising a
great deal of modern set theory in the early 19th century).

If not, there’s a short list of them here.
9 / 26

https://pasik-duncan.ku.edu/ksacg/145/2016_Fall/Math_symbols%20.pdf

Input Space Partitioning

Preliminaries

isLeapYear
Some Java methods can be very naturally modelled as mathematical
functions. java.lang.Math.abs was intended to implement tha
mathematical abs function, so the mathematical function is a
natural model.

As another example, a Java method isLeapYear, with the following
signature and description
/** Returns a Boolean, indicating whether

* <code>year</code> is a leap year or not.

*/

static boolean isLeapYear(int year);

can be modelled as the mathematical function

isLeapYear : Z → {true, false}
10 / 26

Input Space Partitioning

Preliminaries

Mathematics and models

Models are always simplifications – they abstract from the real
world, and leave some details out.

When we abstract the Java method

static boolean isLeapYear(int year)

as the mathematical function

isLeapYear : Z → {true, false}

we’re ignoring the fact that a Java int can’t actually hold every
possible integer value – it’s limited to the range of values from
-2,147,483,648 (−231) to 2,147,483,647 (231−1).

11 / 26

Input Space Partitioning

Preliminaries

Mathematics and models

Java vs model

static boolean isLeapYear(int year)

isLeapYear : Z → {true, false}

But for most purposes, that model will be good enough.

How much detail we put into our models – how “true to life” they must be
– will depend on what the consequences are if our software goes wrong,
and how much we want to avoid those consequences.

If we are writing budgeting software in Python for our own use, then the
model above is probably fine.

If we are working with numbers of very large magnitude (or perhaps are
writing a compiler), then we might want to make our model more precise.

12 / 26

Input Space Partitioning

Preliminaries

Testing functions

We know that we can’t test most Java methods exhaustively (for
instance, it would be impractical to test the java.lang.Math.abs

method with every one of the 4294967296 values it can take).

So when modelling something as a function, we rely on two
important principles:

▶ We don’t have to test all the inputs to a software component,
but can choose representative samples, and

▶ Programmers tend to make mistakes on or around the
boundaries of things.

13 / 26

Input Space Partitioning

Preliminaries

Equivalence classes

Instead of writing 4294967296 tests for java.lang.Math.abs, we
might instead try to ensure that

▶ We have tested it with a positive int
▶ We have tested it with a negative int
▶ We have tested it with 0

Why? Because in all likelihood, java.lang.Math.abs will treat all
positive ints the same – once we’ve tested a few positive ints,
chances are that testing more isn’t go to make any difference.

We have grouped the possible inputs into what are called
equivalence classes – sets of values which (for some property we
choose) can be treated as equivalent.

14 / 26

Input Space Partitioning

Preliminaries

Boundaries

So having divided up the ints into positive, negative and 0, we
might decide to test java.lang.Math.abs with, say, the numbers 32,
-4059, and 0.

Knowing that when programmers make mistakes, it is often around
the boundaries of things, we might also test the numbers 1 and -1
(and perhaps the numbers −231 and 231−1) – why those numbers?

15 / 26

Input Space Partitioning

Preliminaries

Tuples

What about if our method has more than one argument?

Then we represent it as a mapping that takes in a pair of things.
The Java method

/** Returns the smaller of two int values.

*/

static int min(int a, int b)

is modelled as the mathematical function

min : (Z,Z) → Z

16 / 26

Input Space Partitioning

Preliminaries

Tuples

Java vs model

static int min(int a, int b)

min : (Z,Z) → Z

And a method that took three arguments would be modelled as function
taking in a triple, of type (Z,Z,Z) → Z

And more generally, a method that takes n arguments is modelled by a
function mapping from an n-tuple.

17 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

How would we model the getValue() method in the following class?

class Counter {

private int c;

public Counter() { this.c = 0; }

public void increment() { c += 1; }

public int getValue() { return c; }

}

It takes no arguments at all.

18 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

How would we model the getValue() method in the following class?

class Counter {

private int c;

public Counter() { this.c = 0; }

public void increment() { c += 1; }

public int getValue() { return c; }

}

It takes no arguments at all.

18 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

Can we model it as a mathematical function something like this?

getValue : () → Z

We cannot. Mathematical functions always return the same result
for a given parameter or parameters.

The result of public int getValue() depends not only on the
arguments (. . . of which there are none), but also on the state of the
object it’s being called on.

If we’re going to model it as a mathematical function, we also have
to include the object state.

19 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

Can we model it as a mathematical function something like this?

getValue : () → Z

We cannot. Mathematical functions always return the same result
for a given parameter or parameters.

The result of public int getValue() depends not only on the
arguments (. . . of which there are none), but also on the state of the
object it’s being called on.

If we’re going to model it as a mathematical function, we also have
to include the object state.

19 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

Can we model it as a mathematical function something like this?

getValue : () → Z

We cannot. Mathematical functions always return the same result
for a given parameter or parameters.

The result of public int getValue() depends not only on the
arguments (. . . of which there are none), but also on the state of the
object it’s being called on.

If we’re going to model it as a mathematical function, we also have
to include the object state.

19 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

Can we model it as a mathematical function something like this?

getValue : () → Z

We cannot. Mathematical functions always return the same result
for a given parameter or parameters.

The result of public int getValue() depends not only on the
arguments (. . . of which there are none), but also on the state of the
object it’s being called on.

If we’re going to model it as a mathematical function, we also have
to include the object state.

19 / 26

Input Space Partitioning

Preliminaries

The “this” parameter

So our model is a mapping from a Counter object’s state (an int)
to a return value.

getValue : Z → Z

In effect, we can think of the getValue method as taking an
“invisible” extra parameter (sometimes called the “receiver”
parameter), representing the state of the object.
public int getValue(/* invisible "this" parameter */)

In Java, whenever we call a non-static method, the Java virtual
machine takes care of passing an invisible “extra” argument to the
method.
myCounter.getValue() // <− the JVM includes myCounter as

// a sort of extra argument

20 / 26

Input Space Partitioning

Preliminaries

Other languages

The Python runtime does the same, when we invoke a method; but
when we write the method, we have to explicitly put in the receiver
parameter (conventionally called “self”):

def getValue(self):

return self.c

And in non-OO languages like C, there is no language support for
receiver objects at all. If we want to emulate object state, we must
pass it around explictly.

21 / 26

Input Space Partitioning

Preliminaries

Mutating state

class Counter {

private int c;

public Counter() { this.c = 0; }

public void increment() { c += 1; }

public int getValue() { return c; }

}

What about the increment method? How do we model that?

It takes no arguments, but also has no return value.

22 / 26

Input Space Partitioning

Preliminaries

Mutating state

class Counter {

private int c;

public Counter() { this.c = 0; }

public void increment() { c += 1; }

public int getValue() { return c; }

}

What about the increment method? How do we model that?

It takes no arguments, but also has no return value.

22 / 26

Input Space Partitioning

Preliminaries

Mutating object state

public void increment() { c += 1; }

We model it as a mathematical function that takes in the state of a
Counter object, and returns a new state:

increment : Z → Z

input state output state

23 / 26

Input Space Partitioning

Preliminaries

Mutating other state

What about the System.out.println method, which prints things to
the screen – how do we model that?

Well it “mutates” the state of the screen (and possibly our eyes?),
so we could model it as

println : (String , SetOfPossibleScreenStates) → SetOfPossibleScreenStates

input state output state

24 / 26

Input Space Partitioning

Preliminaries

Mutating other state

What about the System.out.println method, which prints things to
the screen – how do we model that?

Well it “mutates” the state of the screen (and possibly our eyes?),
so we could model it as

println : (String , SetOfPossibleScreenStates) → SetOfPossibleScreenStates

input state output state

24 / 26

Input Space Partitioning

Preliminaries

Mutating other state

If we have methods that read or write to the file system or a
database, we could model them as having domains and/or
codomains which include sets of things like
SetOfPossibleFileSystemStates or SetOfPossibleDatabaseStates.

It doesn’t matter too much what we call those sets, but we have to
remember they are there.

We have to remember that the return value of a Java method that
looks from its signature like it has no parameters –

public int returnMostRecentDatabaseRecordId();

may very well depend on other things; so when we’re coming up
with test values, we have to include those “other things” in our
test values.

25 / 26

Input Space Partitioning

Preliminaries

Further examples

Suppose we have a static method divide, with the signature:

int divide(int m, int n);

It returns the value of m divided by n, but with the precondition that
n can’t be zero.

▶ How would we model this as a function?

▶ Suppose instead that we specify that in most cases, divide
returns the value of m divided by n, unless n equals zero; in that
case, it throws a DivisionByZeroException. How does our
model change?

26 / 26

Input Space Partitioning

Preliminaries

Further examples

Suppose we have a static method divide, with the signature:

int divide(int m, int n);

It returns the value of m divided by n, but with the precondition that
n can’t be zero.

▶ How would we model this as a function?
▶ Suppose instead that we specify that in most cases, divide

returns the value of m divided by n, unless n equals zero; in that
case, it throws a DivisionByZeroException. How does our
model change?

26 / 26

	Input Space Partitioning
	Preliminaries

