
Input Space Partitioning Test criteria ISP criteria

CITS5501 Software Testing and Quality Assurance
Input Space Partition Testing, continued

Unit coordinator: Arran Stewart

1 / 84

Input Space Partitioning Test criteria ISP criteria

Input Space Partitioning

2 / 84

Input Space Partitioning Test criteria ISP criteria

ISP technique

Let’s use the findElement method we saw at the start of the lecture
as an example.
/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

ISP is about considering the domain for the function – all its possible inputs –
and choosing finite sets of values from the input domain to use as test values.

Input parameters define the scope of the input domain.

▶ Parameters to a method
▶ Data read from a file
▶ Global variables
▶ User level inputs

3 / 84

Input Space Partitioning Test criteria ISP criteria

ISP technique

▶ The domain for each input parameter is partitioned into regions
▶ At least one value is chosen from each region

4 / 84

Input Space Partitioning Test criteria ISP criteria

Not just methods

We ccan apply the ISP technique not just to Java methods, but
anything we’re able to model as a function.

▶ Systems - e.g. a database system. We could consider it as
taking in use requests (e.g. a manager requests a report on
quarterly revenues) and spitting out reports.
▶ (Bearing in mind that we have to ensure we account for all the

parameters, not just the obvious ones.)
▶ Hardware - e.g. an Internet-controllable toaster. We can

consider as taking in toasters settings and untoasted bread, and
spitting out toast.

5 / 84

Input Space Partitioning Test criteria ISP criteria

Benefits of ISP

The ISP technique has some useful advantages:

▶ Can be equally applied at several levels of testing
▶ Unit
▶ Integration
▶ System

▶ Easy to adjust the procedure to get more or fewer tests

6 / 84

Input Space Partitioning Test criteria ISP criteria

Relationship to other techniques

ISP subsumes several other techniques you might see mentioned in
textbooks or online:

▶ equivalence partitioning
▶ boundary value analysis
▶ domain testing

These techniques are collectively referred to as “partition testing”.

7 / 84

Input Space Partitioning Test criteria ISP criteria

Relationship to other techniques

ISP ignores a distinction you might see made between what is called
“white box testing” and “black box testing” – more on this later.

8 / 84

Input Space Partitioning Test criteria ISP criteria

Steps in ISP

▶ Identify testable functions
▶ Identify all parameters to the functions
▶ Model the input domain in terms of characteristics, each of

which gives rise to a set of partitions.
▶ example: “sign of a number”, used for abs

▶ Choose particular partitions, and values from within those
partitions

▶ Refine into test values
▶ Review!

9 / 84

Input Space Partitioning Test criteria ISP criteria

Steps in ISP

Some questions:

▶ what is a partition?
▶ what is a characteristic?
▶ how do we come up with them?

10 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitioning

11 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

▶ Informally:

partitions are a collection of disjoint sets of some domain D
which cover the domain.

▶ They are pairwise disjoint (i.e. none overlap each other)

p2 p3

p1

12 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers < 0}
▶ p2 = { numbers > 0}

It is not – it leaves out 0, so the proposed partitioning doesn’t cover
the domain.

13 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers < 0}
▶ p2 = { numbers > 0}

It is not – it leaves out 0, so the proposed partitioning doesn’t cover
the domain.

13 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers ≤ 0}
▶ p2 = { numbers ≥ 0}

It is not – the sets p1 and p2 overlap (they both include 0) – so they
are not disjoint, and can’t be valid partitions.

14 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers ≤ 0}
▶ p2 = { numbers ≥ 0}

It is not – the sets p1 and p2 overlap (they both include 0) – so they
are not disjoint, and can’t be valid partitions.

14 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers < 0}
▶ p2 = {0}
▶ p3 = { numbers > 0}

It is – the sets p1, p2 and p3 cover the domain (nothing is left out),
and none of them overlap each other.

15 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Is the following a valid partitioning of the integers?

▶ p1 = { numbers < 0}
▶ p2 = {0}
▶ p3 = { numbers > 0}

It is – the sets p1, p2 and p3 cover the domain (nothing is left out),
and none of them overlap each other.

15 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Suppose we have some parameter Integer n that we’re trying to
partition.

We divide the domain of n up into positive numbers, negative
numbers, and 0. Is that a partition?

It is not. Integer is what’s called a reference type in Java. Whereas
an int represents a concrete 4 bytes of memory, an Integer is a
“pointer” to some bytes of memory residing . . . “elsewhere”.
(Technically, on the heap.)

It can be positive, negative, or zero, but it can also take on the
value null.

16 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

Suppose we have some parameter Integer n that we’re trying to
partition.

We divide the domain of n up into positive numbers, negative
numbers, and 0. Is that a partition?

It is not. Integer is what’s called a reference type in Java. Whereas
an int represents a concrete 4 bytes of memory, an Integer is a
“pointer” to some bytes of memory residing . . . “elsewhere”.
(Technically, on the heap.)

It can be positive, negative, or zero, but it can also take on the
value null.

16 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

▶ p1 = { null }
▶ p2 = not null; the union of

▶ r1 = { numbers < 0}
▶ r2 = {0}
▶ r3 = { numbers > 0}

Do we need to remember to include the possibility of null values
when testing Java systems?

It depends.

In most cases, we can assume that a null shouldn’t be passed as a
parameter, and that if it is passed, the JVM will simply throw a
NullPointerException at some point.

17 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Partitions

▶ p1 = { null }
▶ p2 = not null; the union of

▶ r1 = { numbers < 0}
▶ r2 = {0}
▶ r3 = { numbers > 0}

Do we need to remember to include the possibility of null values
when testing Java systems?

It depends.

In most cases, we can assume that a null shouldn’t be passed as a
parameter, and that if it is passed, the JVM will simply throw a
NullPointerException at some point.

17 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

nulls – the usual case

If that’s the case:

▶ we don’t bother mentioning this in the method documentation
– it’s taken as read that nulls are invalid

▶ we don’t bother testing this – why would we bother? We
wouldn’t be testing our software, we’d be effectively testing the
JVM’s ability to detect nulls and throw exceptions. And it’s
unlikely we have time for that.

▶ you shouldn’t, if asked to come up with a useful test case, or a
characteristic for partitioning, mention “null-ness” and expect
to get marks for it. We will not be impressed.
▶ You may wish to mention it for completeness – to cover all

possibilities. But on its own, we won’t consider it a useful
partitioning or characteristic.

18 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

nulls – unusual cases

Occasionally in Java methods – we probably won’t see many of
them – null has a special meaning.

▶ e.g. the java.util.TreeMap<K,V> class allows you to store and
look up values of type V using “keys” of type K. (You might for
instance store student’s marks in a TreeMap<Student,Double.)

▶ The documentation for java.util.TreeMap.get says:
/** Returns the value to which this TreeMap maps the

* specified key. Returns null if the TreeMap contains

* no mapping for this key.

*/

public V get(K key);

19 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

nulls – unusual cases

/** Returns the value to which this TreeMap maps the

* specified key. Returns null if the TreeMap contains

* no mapping for this key.

*/

public V get(K key);

So in this case, null is a value that is intentionally returned, and
some of the other TreeMap methods intentionally take it as an
argument value.

(As it happens, that was probably a poor choice on the part of the
Java library designers, and languages like Python and C++ and Rust
do things differently, but that’s by the by.)

20 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Characteristics
A characteristic is just some property of an input value which can be used
to partition the domain of the value.

Some examples:

▶ evenness is a characteristic of ints, the partitions them into even and
odd.

▶ signedness is the characteristic of intss that partitions them into
positive, negative, and zero (no sign).

▶ nullness is a characteristic of reference types that partitions them into
being either null or not-null. And there are probably sub-partitions
within the latter.
▶ (But as noted before: unless null values are significant for a

method or component we’re looking at, we will not expect to
mention nullness.)

▶ all-caps-ness is a characteristic of non-null strings that divides them
into those strings that are wholly capitalized, and those that are not.

21 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Characteristics

/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

What about the our findElement method?
(Both its arguments could be null – but we’ll ignore that.)

What are some properties of lists that we could partition on?

Some possible characteristics:

▶ “is empty” – not the same as nullness! We can have a list that is not null
(it has been properly created), but no elements have been added to it yet.

▶ “contains the element elem” – this actually is a characteristic of both
parameters in combination – that’s okay, it’s allowed.

▶ “contains the element elem more than once” – this divides the domain into
“lists containing elem at least twice” and “lists containing elem 0 or 1
times”.

22 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Characteristics

/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

What about the our findElement method?
(Both its arguments could be null – but we’ll ignore that.)

What are some properties of lists that we could partition on?

Some possible characteristics:

▶ “is empty” – not the same as nullness! We can have a list that is not null
(it has been properly created), but no elements have been added to it yet.

▶ “contains the element elem” – this actually is a characteristic of both
parameters in combination – that’s okay, it’s allowed.

▶ “contains the element elem more than once” – this divides the domain into
“lists containing elem at least twice” and “lists containing elem 0 or 1
times”. 22 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

More characteristics

/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

▶ We might consider the partition of “lists that contain the element elem,
and decided to sub-partition it.

▶ We could use as a characteristic: “contains the element elem, as the first
element of list”.

▶ In fact while we’re at it, we might as well add as a characteristic:
“contains the element elem, as the last element of list.

▶ What would’ve made us come up with those two characteristics? The fact
that we know programmers tend to make errors around boundaries, and
the first and last positions form the boundaries of the set of valid positions.

23 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Our characteristics

24 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Our characteristics

25 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

More characteristics

▶ And there are other characteristics we might come up with.

▶ For instance: what happens if the element appears more than
once? Presumably it shouldn’t make a difference, but it doesn’t
hurt to check.

26 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Bad characteristics

▶ Choosing (or defining) partitions seems easy, but is easy to get
wrong

▶ Suppose we have some program which sorts items in a file F

▶ We might pick as a characteristic of F, “the ordering of the
file”, and partition it into three partitions:

p1 = sorted in ascending order
p2 = sorted in descending order
p3 = arbitrary order

27 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Bad characteristics

▶ But is this really a partitioning?

What if the file is of length 1?
The file will be in all three blocks . . .
That is, disjointness is not satisfied

28 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Bad characteristics

Solution:
Each characteristic should address just one property

▶ File F sorted ascending
▶ b1 = true
▶ b2 = false

▶ File F sorted descending
▶ b1 = true
▶ b2 = false

In general, it’s better to have many characteristics, each of which
partitions its domain into just a few partitions, than to try and have
only a few large and complex characteristics.

29 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Bad characteristics

If we decide we’ve come up with more characteristics than we want
– then we can always ignore a few.

But complex characteristics lead more easily to mistakes, and it is
harder to spot and fix those.

30 / 84

Input Space Partitioning Test criteria ISP criteria

Partitioning

Properties of Partitions

▶ If the partitions are not complete or disjoint, that means the
partitions have not been considered carefully enough

▶ They should be reviewed carefully, like any design attempt
▶ Different alternatives should be considered

31 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

ISP review

32 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Review of steps

Let’s review the steps in applying the ISP technique:

▶ Identifying testable functions
▶ For each function, find all the parameters
▶ Model the input domain in terms of characteristics
▶ Choose particular partitions, and values from within those

partitions
▶ Refine into test values

We’ll now look at these in a bit more detail.

33 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Step 1 – Identifying testable functions

Recall that we can apply the ISP technique to methods (or functions
or procedures, in languages other than Java), classes, components,
programs, systems - anything we can treat as function-like.

▶ Individual methods or functions normally have one testable
function

▶ Classes will have multiple testable functions
▶ Whole programs and larger systems may have many functions,

and complex characteristics – modelling and design documents
such as UML use cases or user stories can be useful here

▶ Systems of integrated hardware and software components can
use devices, operating systems, hardware platforms, browsers,
etc

34 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Step 2 – Find all the parameters

▶ Often fairly straightforward
▶ Important to be complete, though

Applied to different levels:

▶ Methods: Actual method parameters, plus state used
▶ state includes: state of the current object; global variables; files

etc. read from
▶ Components: Parameters to methods, plus relevant state
▶ System: All inputs, including files and databases

35 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Step 3 – Model the input domain

▶ We need to characterise the input domain, and divide it into
partitions –
where each partition represents a set of values

▶ This is a creative design step – different test designers might
come up with different ways of modelling the input domain

▶ . . . and there’s not really a mechanical way of checking
whether a modelling is “correct” – needs human review.

36 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Step 4 – Choose combinations of values

▶ So, we’ve come up with our characteristics and partitions
▶ These help us divide up the entire input domain (usually of

enormous size) into a much smaller and more tractable set of
partitions.

▶ Can we now simply take all (feasible) combinations of
partitions, and write tests?

▶ Usually not – there’ll often be too many partitions to try all
combinations.

▶ Coverage criteria are criteria for choosing subsets of
combinations (more later)

37 / 84

Input Space Partitioning Test criteria ISP criteria

ISP review

Step 5 – refine combinations into test inputs

▶ . . . At the end of this step, we have actual test cases.

38 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Input domain modeling

39 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Approaches to Input Domain Modeling

So we said that in step 3, we model the input domain – characterise
it and divide it into partitions.

We’ve done that so far by staring at a method specification and
hoping for inspiration.

If we want to try something more principled, there are two general
approaches we can take.

40 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Two approaches

1. Interface-based approach
▶ Develops characteristics directly from individual input

parameters
▶ Simplest application
▶ Can be partially automated in some situations

2. Functionality-based approach
▶ Develops characteristics from a behavioral view of the program
▶ under test
▶ Harder to develop – requires more design effort
▶ May result in better tests, or fewer tests that are as effective

41 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Interface-Based Approach

▶ Mechanically consider each parameter in isolation
▶ This is an easy modeling technique and relies mostly on syntax
▶ Some domain and semantic information won’t be used

▶ Could lead to an incomplete IDM
▶ Ignores relationships among parameters

▶ It wouldn’t come up with the “is the element in the list?”
characteristic we saw for
findElement (List<Integer> list, Integer elem)

42 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Functionality-Based Approach

▶ Identify characteristics that correspond to the intended
functionality

▶ Requires more design effort from tester
▶ Can incorporate domain and semantic knowledge
▶ Can use relationships among parameters
▶ Modeling can be based on requirements, not implementation
▶ The same parameter may appear in multiple characteristics, so

it’s harder to translate values to test cases

43 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Characteristics

▶ Candidates for characteristics :
▶ Preconditions and postconditions
▶ Relationships among variables
▶ Relationship of variables with special values (zero, null, blank,

. . .)
▶ Better to have more characteristics with few partitions

44 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Interface vs Functionality-Based modelling

/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

Interface-Based Approach:

▶ Two parameters : list, element
▶ Characteristics:

list is null (block1 = true, block2 = false)
list is empty (block1 = true, block2 = false)

45 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Interface vs Functionality-Based modelling

/** return true if <code>elem</code> is

* in <code>list</code>, otherwise return false.

*/

public static boolean findElement (List<Integer> list, Integer elem)

Functionality-Based Approach:

▶ Two parameters : list, element
▶ Characteristics:

number of occurrences of element in list
(0, 1, >1)

element occurs first in list
(true, false)

element occurs last in list
(true, false)

46 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Strategies for modelling

Recall that once we have partitions, we’ll want to choose particular
values from within those partitions.

▶ Include valid, invalid and special values
▶ Sub-partition some blocks
▶ Explore boundaries of domains
▶ If a value is of an enumerated type, can draw from each

possible value
▶ Include values that represent “normal use”
▶ Try to balance the number of blocks in each characteristic
▶ Check for completeness and disjointness

47 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Interface-Based IDM example – triType

Suppose we have a method
String triType(int l1, int l2, int l3) that takes in the lengths
of three sides of a triangle, and returns a string telling us what sort
it is.

Possible outputs are:

▶ “invalid” – not a triangle. E.g. (1, 1, 5), (−5, 3, 4).
▶ “equilateral” – all sides are the same
▶ “isosceles” – not equilateral and not invalid, and two sides are

the same
▶ “scalene” – everything else

48 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Interface-Based IDM example – triType

How might we categorize the inputs?
(Applying just the simple interface-based approach.)

Characteristic l1 l2 l3
q1 = “Rel. of side 1 to 0”
q2 = “Rel. of side 2 to 0”
q3 = “Rel. of side 3 to 0”

greater than 0
greater than 0
greater than 0

equal to 0
equal to 0
equal to 0

less than 0
less than 0
less than 0

▶ A maximum of 3 × 3 × 3 = 27 tests
▶ Some triangles are valid, some are invalid
▶ Refining the characterization can lead to more tests . . .

49 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Functionality-Based IDM – TriTyp

▶ So this is the interface based approach – just looks at
parameters and types

▶ A semantic level characterization could use the fact that the
three integers represent a triangle
▶ The combination of parameters (1, 1, 2) represents exactly the

same triangle as (1, 2, 1) and (2, 1, 1).
▶ (For the math-inclined – we’re looking for, and finding ways to

ignore, symmetries in the input domain)

Characteristic p1 p2 p3 p4

q1 = “Geometric
Classification”

scalene isosceles, not
equilateral

equilateral invalid

50 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Using more than one modelling

▶ Some programs may have dozens or even hundreds of
parameters

▶ Create several small IDMs
▶ A divide-and-conquer approach

▶ Different parts of the software can be tested with different
amounts of rigor
▶ For example, some IDMs may include a lot of invalid values

▶ It is okay if the different IDMs overlap
▶ The same variable may appear in more than one IDM

51 / 84

Input Space Partitioning Test criteria ISP criteria

Input domain modeling

Step 4 – Choosing Combinations of Values

▶ Once characteristics and partitions are defined, the next step is
to choose test values

▶ We use criteria – to choose effective subsets

▶ An obvious criterion is to choose all combinations . . .

All Combinations (ACoC): All combinations of blocks from all
characteristics must be used.

▶ Number of tests is the product of the number of blocks in each
▶ This will often be far too large – we will look at ways of using

fewer.

52 / 84

Input Space Partitioning Test criteria ISP criteria

Test criteria

53 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed

▶ When we run out of time
▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time

▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time
▶ When continued testing causes no new failures

▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time
▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults

▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time
▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases

▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time
▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained

▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

How do we know when we have tested enough? When should we
stop testing? How many tests do we need?

Some possibilities:

▶ When all faults have been removed
▶ When we run out of time
▶ When continued testing causes no new failures
▶ When continued testing reveals no new faults
▶ When we cannot think of any new test cases
▶ When some specified test coverage level has been attained
▶ When we reach a point of diminishing returns

54 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

Some other possibilities:

▶ Fault seeding: We deliberately implant a certain number of
faults in a program. If our tests reveal x% of the implanted
faults, we assume they have also only revealed x% of the
original faults; and if our tests reveal 100% of the implanted
faults, we are more confident that our tests are adequate.

(What assumptions are we making here?)

55 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

other possibilities, cont’d:

▶ Mutation testing: We mutate parts of our program
(e.g. altering constants, negating conditionals in loops and “if”
statements). Overwhelmingly, our new mutated program
should be wrong; if no tests identify at as such, we may need
more tests.

(And if some of our tests never seem to kill mutated programs,
they may be ineffective.)

56 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

other possibilities, cont’d:

▶ Risk-based: We identify risks to our project, and put in place
strategies (including testing) to mitigate or reduce those risks.

We estimate the effort required for those strategies, and their
likely pay-off, and stop when the risk has been reduced to
whatever we consider a tolerable level.

(Also applies to “How formally should we specify our system?”)

(In fact, applies to almost every question of the from “How much X
should we do?
Answer: Enough to bring the risks to a tolerable level.)

57 / 84

Input Space Partitioning Test criteria ISP criteria

When to stop testing

other possibilities, cont’d:

▶ Risk-based: We identify risks to our project, and put in place
strategies (including testing) to mitigate or reduce those risks.

We estimate the effort required for those strategies, and their
likely pay-off, and stop when the risk has been reduced to
whatever we consider a tolerable level.

(Also applies to “How formally should we specify our system?”)

(In fact, applies to almost every question of the from “How much X
should we do?
Answer: Enough to bring the risks to a tolerable level.)

57 / 84

Input Space Partitioning Test criteria ISP criteria

Test coverage

▶ Sometimes test plans will specify that tests ought to have some
specified level of coverage of the code.

▶ Test coverage is some measure of the extent to which the
source code of a program has been executed when a particular
test suite runs.

▶ Coverage is often measured using test coverage tools.

58 / 84

Input Space Partitioning Test criteria ISP criteria

Test coverage tools

▶ How do test coverage tools work?
▶ Typically, they do what is called instrumenting the code in

some way – adding extra instructions which record how many
times some piece of code has been executed.

▶ This might be done at the source code level, but more often is
done at the byte-code or machine-code level.

59 / 84

Input Space Partitioning Test criteria ISP criteria

Java test coverage tools

Some common test coverage tools for Java include:

▶ JCov
▶ Cobertura
▶ OpenClover

60 / 84

Input Space Partitioning Test criteria ISP criteria

Java test coverage example

Suppose we want to record test coverage using JCov. The steps are:

▶ Compile code as normal (e.g. using javac, an IDE, or a build
tool such as ant)

▶ “Instrument” the compiled bytecode:
$ java −jar jcov.jar Instr [class1.class class2.class ...]

▶ Run our program (or, some test suite). This produces a
result.xml file.
$ java −classpath jcov_file_saver.jar:. MyProg

61 / 84

Input Space Partitioning Test criteria ISP criteria

Java test coverage example, cont’d

▶ Generate a report from the XML file

$ java −jar jcov.jar RepGen result.xml

62 / 84

Input Space Partitioning Test criteria ISP criteria

Code coverage reports

Code coverage results are often produced in HTML format, or
displayed in the IDE. Fragment of a sample report from Cobertura:

63 / 84

Input Space Partitioning Test criteria ISP criteria

Code coverage reports

Typical measures of coverage given by code coverage tools are:

▶ Line coverage (% of lines executed)
▶ Branch coverage (% of branches taken)
▶ Method coverage (% of methods executed)
▶ Condition or predicate coverage (% of boolean conditions

evaluated to both true and false)

64 / 84

Input Space Partitioning Test criteria ISP criteria

Custom code coverage

What if we want to calculate some code coverage measure which
our tool doesn’t supply by default?
For instance, “prime path coverage” (which we will see in the
lecture on graph-based testing) is not usually one of them.

Some tools provide an API which lets us write our own custom
measures of coverage – for instance, JCov does this.

65 / 84

Input Space Partitioning Test criteria ISP criteria

Custom code coverage

What if we want to calculate some code coverage measure which
our tool doesn’t supply by default?
For instance, “prime path coverage” (which we will see in the
lecture on graph-based testing) is not usually one of them.

Some tools provide an API which lets us write our own custom
measures of coverage – for instance, JCov does this.

65 / 84

Input Space Partitioning Test criteria ISP criteria

Limits of code coverage tools

▶ Code coverage tools give us measures of coverage based on
source code.

▶ But sometimes our tests aren’t based on source code as a
model

▶ For instance, we might be writing tests based on a state chart
or activity diagram of the system.

▶ And Input Space Partitioning isn’t based on source code,
exactly – it’s based on specifications for some view of the
system (or a part of it) as a function. Knowing how many
functions or methods were executed as a result of our
ISP-based tests isn’t a great measure of what degree of
coverage the tests provide of the input domain.

66 / 84

Input Space Partitioning Test criteria ISP criteria

General coverage criteria

▶ Therefore, we want more general measures of coverage, which
can be applied to things other than source code.

▶ For each of the types of model-based testing covered in this
course (ISP, graph-based, logic-based, syntax-based) we will
also look at coverage criteria which let us estimate how
throrough our tests are.

▶ Our coverage calculations will largely be manual, in this case,
since we have no equivalent of a “code coverage” tool to tell us
(say) when paths through an activity diagram have been
thoroughly executed.

67 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria

68 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria

▶ We’ll illustrate our criteria using the idea of a program which
classifies triangles, based on their edge lengths (this is an old
example in the testing literature)

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }

public Triangle triType (int side1, int side2, int side3)

69 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – interface approach

public Triangle triType (int side1, int side2, int side3)

▶ Simply considering the parameters alone doesn’t give us much
help.

▶ We might come up with a characteristic for each, namely,
“How does it compare with 0?”, and partition the domain by
asking “Is the parameter less than, equal to, or great than 0?”

70 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ A better approach is to consider the semantics (functionality)
of the method.

▶ It deals, after all with triangles.
▶ => model the input space in terms of that
▶ The order of parameters is not important, rather their relation

is.

71 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is

▶ scalene
▶ isosceles
▶ equilateral
▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is
▶ scalene

▶ isosceles
▶ equilateral
▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is
▶ scalene
▶ isosceles

▶ equilateral
▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is
▶ scalene
▶ isosceles
▶ equilateral

▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is
▶ scalene
▶ isosceles
▶ equilateral
▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ One attempt:

Partition the input domain using a geometric classification: do
the parameters represent a triangle which is
▶ scalene
▶ isosceles
▶ equilateral
▶ invalid

▶ What’s the problem here?

72 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ Equilateral triangles are a subset of isosceles triangles - our
“partitions” are not disjoint.

▶ Refine the partitions to:
▶ scalene
▶ non-equilateral isosceles
▶ equilateral
▶ invalid

73 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ We might then come up with some inputs which fall into each
partition:

geometric type input value

sca (4,5,6)
iso (3,3,4)
equ (3,3,3)
inv (3,4,8)

74 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – functionality-based approach

▶ The guideline of “prefer more characteristics, with few
partitions” on the other hand, suggests the following:

characteristic partitions

is scalene (T,F)
is isosceles (T,F)
is equilateral (T,F)
is invalid (T,F)

75 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

▶ How many values should we choose?
▶ One possibility: “all combinations” (ACoC)

▶ The number of tests would be
(no. of partitions for char. 1) * (no. of partitions for char. 2) *
. . .

▶ If we used the interface approach (partitioning each parameter
by whether it is less than, equal to, or greater than 0) we get 3
blocks with 3 partitions, so the no. of tests is 3 * 3 * 3 = 27 –
Probably more than we would like.

▶ Using the functionality approach . . .
▶ We will end up with constraints which rule out some

combinations. If a triangle is scalene, it follows it can’t be
isosceles, equilateral, or invalid

▶ We’ll end up with only 8 tests (much more tractable)

76 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

Suppose we have a method myMethod(boolean a, int b, int c),
and we partition the paramaters as follows:

▶ the boolean into true and false (let’s call these partitions T
and F)

▶ parameter b into “> 0”, “< 0” and “equal to zero” (let’s call
these partitions LTZ, GTZ, and EQZ)

▶ parameter c into “even” and “odd” (let’s call these EVEN and
ODD).

77 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – all combinations

Using the “all combinations” criterion, we’d need to write

|{T , F}| × |{LTZ , GTZ , EQZ}| × |{EVEN, ODD}|
= 2 × 3 × 2
= 12 tests.

Often this will be far more than is feasible.

78 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

▶ Base choice criteria recognize that some values are important –
they make use of domain knowledge of the program.

▶ For each characteristic, we choose a base choice partition, and
construct a base test by using all the base choice values.

▶ Then we construct subsequent tests by holding all but one base
choice constant, and varying just one characteristic (using all
the partitions for that characteristic)

▶ Number of tests is one base test + one test for each other
partition:

1 + (|char1| − 1) + (|char2| − 1)...

79 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

Considering our myMethod(boolean a, int b, int c) and the
partitions we specified, if we made our base choices T , GTZ and
EVEN, the required tests would be:

▶ (T , GTZ , EVEN)
▶ (F , GTZ , EVEN) (vary first parameter)
▶ (T , LTZ , EVEN) (vary second parameter)
▶ (T , EQZ , EVEN) (vary second parameter)
▶ (T , GTZ , ODD) (vary third parameter)

80 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – base choice

How do we choose a “base choice”?

▶ must be feasible

Could be:

▶ most likely from an end-use point of view
▶ simplest
▶ smallest
▶ first in some ordering

Test designers should document why a particular base choice was
made

81 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – multiple base choice

▶ Sometimes there are multiple plausible choices for a base
choice.

▶ Multiple Base Choice (MBC):
One or more base choice blocks are chosen for each
characteristic, and base tests are formed by using each base
choice for each characteristic. Subsequent tests are chosen by
holding all but one base choice constant for each base test and
using each non-base choices in each other characteristic.

▶ e.g. For the interface-based approach to the triTyp method, we
might decide both (2,2,2) and (1,1,1) are good base choices.

82 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – multiple base choice

▶ Base choice (2,2,2):

(-1,2,2), (0,2,2)
(2,-1,2), (2,0,2)
(2,2,-1), (2,2,0)

▶ Base choice (1,1,1):

(-1,1,1), (0,1,1)
(1,-1,1), (1,0,1)
(1,1,-1), (1,1,0)

83 / 84

Input Space Partitioning Test criteria ISP criteria

ISP criteria – constraints

▶ Sometimes combinations of partitions are infeasible
(e.g. the functionality-based case for triangles)

▶ For “all combinations” as a criterion, we simply drop infeasible
combinations

▶ For Base Choice and Multiple Base Choice – we change a base
value to a non-base one to find a feasible combination.

84 / 84

	Input Space Partitioning
	Partitioning
	ISP review
	Input domain modeling

	Test criteria
	ISP criteria

