
Models and approaches

CITS5501 Software Testing and Quality Assurance
Model-based testing

Unit coordinator: Arran Stewart

1 / 32

Models and approaches

Models and approaches

2 / 32

Models and approaches

Approaches to testing

For most software components (and other artifacts, such as
machinery, etc.), it’s possible to consider them in two ways, when
testing:

▶ knowing nothing about the internal workings of the component,
we can focus on its intended functionality, and conduct tests
that demonstrate each aspect of the functionality, and attempt
to uncover any errors.
▶ This approach is called “black-box” testing

▶ knowing the internal workings of the components, we can write
tests that try to check the internal operations are correctly
performed, and that all internal components have been
adequately exercised.
▶ This approach is called “white-box” testing

In reality, many testing approaches make use of aspects of both.
3 / 32

Models and approaches

Approaches to testing

▶ Example of “black-box” testing:
▶ The sorts of unit tests we have seen so far: they are derived

from the specifications for methods, and treat the method as a
“black box” that takes in input and produces output, without
considering how it does it.

▶ Example of “white-box” testing:
▶ Looking at the source code for a method, and ensuring that

paths of execution through the method have been adequately
tested.

4 / 32

Models and approaches

Black-box testing

Signature of method, plus specification using Javadoc:

1 /** Remove/collapse multiple spaces.

2 *
3 * @param String string to remove multiple spaces from.

4 * @return String */

5 public static String collapseSpaces(String argStr)

5 / 32

Models and approaches

Black-box testing

▶ Specifications need not be for methods, they can be for
software components, or hardware, or whole systems

6 / 32

Models and approaches

White-box testing
A Java method for collapsing sequences of blanks, taken from the StringUtils

class of Apache Velocity (http://velocity.apache.org/), version 1.3.1.
1 /** Remove/collapse multiple spaces.

2 *
3 * @param String string to remove multiple spaces from.

4 * @return String */

5 public static String collapseSpaces(String argStr) {

6 char last = argStr.charAt(0);

7 StringBuffer argBuf = new StringBuffer();

8 for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++) {

9 char ch = argStr.charAt(cIdx);

10 if (ch != ' ' || last != ' ') {

11 argBuf.append(ch);

12 last = ch;

13 }

14 }

15 return argBuf.toString();

16 }

7 / 32

http://velocity.apache.org/

Models and approaches

Control-flow testing outline

1. Use the source code (or pseudocode) to produce a control flow
graph.

2. Using the graph produce a set of tests for the given program.

8 / 32

Models and approaches

Constructing the graph

▶ In a control flow graph, nodes represent points in the program
control flow can go “from” or “to”

▶ Loops, thrown exceptions and gotos (in languages that have
them) are locations control flow can go from – statements
representing these spots are “sources”

▶ Locations control flow can go to are “sinks”

9 / 32

Models and approaches

Constructing the graph

A

B

6-7, 8A - initializer

 8B - loop condition

C
9

D
10

E 11-12

G 15

F
8C - loop increment

ch != ' ' || last != ' '

not(ch != ' ' || last != ' ')

10 / 32

Models and approaches

Black-box techniques

▶ When we design tests based on the interface – “black-box”
testing – we normally work off the specification for the item,
we don’t care about the details of the implementation

▶ Input space partition testing (this lecture). We don’t need to
look at the code within an item being tested – we just consider
its parameters or inputs.

11 / 32

Models and approaches

Other black-box techniques

▶ In the Pressman textbook you’ll see mention of other black box
techniques, e.g. “boundary value analysis”
▶ i.e., include tests which have inputs at the “boundaries” of

ranges of values
▶ this helps detect, for instance “off-by-one” and “fencepost”

errors

▶ Boundary value analysis is actually incorporated into the ISP
testing procedure covered in this lecture
▶ when “modeling the input domain”, we identify valid values,

invalid, boundaries, “normal use”, and so on

12 / 32

Models and approaches

Benefits of black box testing

▶ Helps find
▶ functionality that is specified but not implemented
▶ functionality that is implemented but incorrect

13 / 32

Models and approaches

White-box testing

▶ We can also design tests by looking at the internal details of an
item to be tested – “white-box” or “clear-box” testing.

▶ This is also sometimes called structural testing, since it looks
at the internal structure of an item to be tested

▶ Here, we do care about the implementation

14 / 32

Models and approaches

White-box testing – examples

▶ As part of white box testing, we might try to ensure that
▶ all internal data structures have been checked
▶ all loops have been checked
▶ where there is some sort of branching statement (if-else, case,

etc.), all the possible branches have been tested
▶ . . . and so on.

15 / 32

Models and approaches

Why perform white-box testing

▶ Why perform white-box testing?
▶ Isn’t black box enough? – after all, it tests the functionality

16 / 32

Models and approaches

Why perform white-box testing (2)

▶ What if we’ve failed to identity some particular scenario (set of
inputs) in black box testing, and not written a test for it?
▶ It can be difficult to think of unusual inputs/scenarios

▶ What if the environment, or some other part of the system,
changes?
▶ code that was previously “dead code”, and never executed,

might now become “live” – and may contain errors

▶ Some sorts of errors (e.g. typos) are as likely to occur on
unusual or uncommon paths of execution, as on anywhere else.
▶ White box testing helps ensure we’ve considered those paths.

17 / 32

Models and approaches

Why perform white-box testing (3)

▶ One question that is often asked is “Do we have enough tests?”
▶ White box testing may not answer that question – but it can

identify parts of a system that haven’t been tested.

18 / 32

Models and approaches

Types of white-box testing
▶ In practice and in the literature, many different techniques are

identified:
▶ branch/decision testing

▶ have all branches in decisions been exercised?
▶ have all parts of boolean expressions been exercised?

▶ control flow testing
▶ uses a program’s control flow graph as a model

▶ data flow testing
▶ flow of data between variables – are there variables that are

declared but not used, or vice versa? Declared multiply? Not
initialized before use? Deallocated before use? Used before
being validated?

▶ statement coverage
▶ is every statement executed at least once?

▶ modified condition/decision coverage (used in avionics)
▶ path testing
▶ prime path testing

19 / 32

Models and approaches

Alternative view – model-based testing

When doing white-box testing of the collapseSpaces function, we
look at the control-flow graph for the function, and try to ensure
our tests adequately exercise paths through the graph (called
checking the test coverage of the graph).

But there are many other sorts of “graphs” we might want to check
for test coverage, and not all are “internal”, “white-box” views of
something.

20 / 32

Models and approaches

Activity diagrams
For instance, activity diagrams are way of modelling a user’s
interactions with a system.

user enters userID

system displays

and password

userID and

password correct?

prompt

system displays

error message
[no]

system displays

welcome message

[yes]

... 21 / 32

Models and approaches

Activity diagrams

These too form a sort of graph, and we can ask whether out tests have
exercised paths through the graph sufficiently.

Activity diagrams don’t look at “source code” or the “inside” of a system –
they consider the “outside” (a user’s interaction with the system).

So they are a sort of “black-box” testing, yet the same methods we use for
control-flow analysis – a form of “white-box” testing – are applicable.

22 / 32

Models and approaches

State diagrams

State diagrams show states something can be in, and transitions
between them.1

1Courtesy Wikipedia, https://en.wikipedia.org/wiki/State_diagram.
23 / 32

https://en.wikipedia.org/wiki/State_diagram

Models and approaches

State diagrams

A state diagram also is a kind of graph, so we can look at whether
our tests have exercised paths through it sufficiently.

Is it “black-box” or “white-box” testing?

24 / 32

Models and approaches

Alternative view – model-based testing

Rather than classifying something as being “black-box” or
“white-box” testing, a more useful approach is to consider various
models of a software system, and ask “What sort of model is this?
And what sort of testing techniques can be applied?”

25 / 32

Models and approaches

Model-based testing – functions

▶ As we’ve seen – if we can treat the model as a function from
inputs to outputs – then we can apply input-space partitioning
to it.
▶ Example: Unit tests based on Javadoc specification
▶ Example: System testing based on specifications

26 / 32

Models and approaches

Model-based testing – graphs

▶ If we can treat the model as a graph – a network of nodes –
then we can apply graph-based techniques to it.
▶ Example: Control flow analysis

27 / 32

Models and approaches

Model-based testing – logic

If particular parts of the system make “choices” based on
combinations of logical conditions, we can apply logic-based
techniques to it.

▶ Example: Avionics systems are required to have a particular
level of coverage of logic expressions

▶ Sample specification for a system [from Ammann]:

If the moon is full and the sky is clear, release the monster.
If the sky is clear and the wind is calm, release the monster.

28 / 32

Models and approaches

Model-based testing – logic vs graphs

▶ Graph-based techniques look at what edges we traverse
between nodes, they don’t look “inside” the nodes –

▶ For any “decision node”, however complex, graph-based
techniques only consider “Which edge do we take out of the
node?”

▶ By contrast, logic-based testing looks “inside” the parts of
boolean expressions making up a “decision point”, and asks
whether we’ve tested those parts sufficiently thoroughly.

29 / 32

Models and approaches

Model-based testing – syntax

▶ If the model can be treated as having a “syntax” (a sort of tree-like,
potentially recursive structure), then we can apply syntax-based
techniques to it.

▶ One example of things with “syntax” is, unsurprisingly, natural
language sentences:2

Sentence

NounPhrase

I

VerbPhrase

VerbPhrase

Verb

shot

NounPhrase

Det

an

Noun

elephant

PreposPhrase

Prepos

in

NounPhrase

Det

my

Noun

pajamas

2Diagram adapted from Bird et al (2009). Dialogue from “Animal Crackers”
(1930, dir. V. Heerman).

30 / 32

Models and approaches

Model-based testing – syntax

But other things that can be modelled as having a syntax are things
like Java source code (a text format), or binary file formats (such as
PNG graphics files or executable files).

31 / 32

Models and approaches

Model-based testing

Our “models” don’t have to be models of source code – they can be
models of, say, database structure, or user interaction with a system,
or class hierarchies, or any other way we find it useful to consider
our system (or some part of it).

32 / 32

	Models and approaches

