Software Quality Assurance

CITS5501 Software Testing and Quality Assurance Quality assurance

Unit coordinator: Rachel Cardell-Oliver

Outline

So far in this unit: For all sorts of software projects: - What makes a software project high (or low) quality? - How can we repeatedly ensure we produce software of high quality?

Today's Agenda: - Quality Assurance - Software Reliability, Availability, and Safety - Software Quality Assurance Plans

Software Quality Assurance

Overview

- Source: Pressman, R. Software Engineering: A Practitioner's Approach (McGraw-Hill, 2020 Ch 15 Quality Concepts Ch 17 SW Quality Assurance)
- Aspects of quality
 - Definition, types of quality costs
- Organizational responsibility
 - Who is responsible for software quality?
- Software reliability, availability, safety
- Quality assurance plans

Software Quality Assurance 00000000000000

- Also called software quality assurance (SQA)
- Serves as an umbrella activity that is applied throughout the software process
- Involves doing the software development correctly versus doing it over again
- Reduces the amount of rework, which results in lower costs and improved time to market
- "Software testing focuses on the evaluation of a product or service to determine if it meets its design specifications and meets the user's needs. Quality Assurance, on the other hand, is a broader term focusing on the overall process of ensuring that a product or service meets its design specifications and meets the user's needs." [https://www.geeksforgeeks.org/software-testing]

What is Software Quality Assurance (cont'd)

SQA encompasses:

- A software quality assurance process
 - (i.e. What is our process for ensuring we maintain quality?)
- Specific quality assurance and quality control tasks (including formal technical reviews and a multi-tiered testing strategy)
 - (i.e. What tasks are involved?)
- Effective software engineering practices (methods and tools)
 - (e.g. Do we use revision control? Unit testing frameworks? OO analysis and design?)
- Control of all software work products and the changes made to them
 - (Do we know what and where our software artifacts are, and who can change them, and when and why?)
- A procedure to ensure compliance with software development standards
 - (e.g. What checks do we have in place?)
- Measurement and reporting mechanisms
 - (e.g. How do team leaders/management know how we're doing?)

Quality Defined

- "a quality" is defined as a characteristic or attribute of something
- Refers to measurable characteristics that we can compare to known standards
- "quality" (in general) is "the degree of excellence of something"
- Software is more difficult in some ways to measure than other things
- ▶ But there are still many attributes which we can measure

Software Quality Assurance 000000000000000

> Definition: "Conformance to explicitly stated functional and performance requirements, explicitly documented development standards, and implicit characteristics that are expected of all professionally developed software"

Software quality – a definition (cont'd)

- This definition emphasizes three points
 - Software requirements are the foundation from which quality is measured; lack of conformance to requirements is lack of quality
 - Specified standards define a set of development criteria that guide the manner in which software is engineered; if the criteria are not followed, lack of quality will almost surely result
 - A set of implicit requirements often goes unmentioned; if software fails to meet implicit requirements, software quality is suspect
- Software quality is no longer the sole responsibility of the programmer
 - It extends to software engineers, project managers, customers, salespeople, and the SQA Software Quality Assurance group
 - Software engineers apply solid technical methods and measures, conduct formal technical reviews, and perform well-planned software testing

Software quality – a definition (cont'd)

- query: What if there are no (or few) formal requirements?
- query: What if it meets the requirements, but customers are unhappy with it?
- query: What if it meets the requirements, but is insecure or in some other way illegal?

Quality Defined (continued)

Some sub-types of quality, taken from manufacturing:

- Quality of design (the quality we're intending to offer)
 - The characteristic that designers specify for an item.
 - This encompasses requirements, specifications, and the design of the system
- Quality of conformance (i.e., implementation)
 - The degree to which the design specifications are followed during manufacturing
 - This focuses on how well the implementation follows the design and how well the resulting system meets its requirements

- What if the user wanted something that's inadvisable? Or illegal?
 - "Store all user-names and passwords in a text file, so we can easily manage and change them."

Quality Control

- Involves a series of inspections, reviews, and tests used throughout the software process
- Ensures that each work product meets the requirements placed on it
- Includes a feedback loop to the process that created the work product
 - This is essential in minimizing the errors produced
- Combines measurement and feedback in order to adjust the process when product specifications are not met
- Requires all work products to have defined, measurable specifications to which practitioners may compare to the output of each process

Software Quality Assurance

00000000000000000

MS Word – it sometimes crashes

could it be made better quality?

MS Word – it sometimes crashes

- could it be made better quality?
- could Microsoft apply, say, formal methods to get NASA-level quality from MS Word?

Software Quality Assurance 000000000000000

MS Word – it sometimes crashes

- could it be made better quality?
- could Microsoft apply, say, formal methods to get NASA-level quality from MS Word?
- should they?

Software Quality Assurance

000000000000000

MS Word – it sometimes crashes

- could it be made better quality?
- could Microsoft apply, say, formal methods to get NASA-level quality from MS Word?
- should they?
- What would be the costs? What would be the benefits?

Cost of quality . . .

- includes all costs incurred in the pursuit of quality or in performing quality-related activities
- is studied to
 - Provide a baseline for the current cost of quality
 - Identify opportunities for reducing the cost of quality
 - Provide a normalized basis of comparison (which is usually dollars)
- involves various kinds of quality costs (see next slides)
- increases dramatically as the activities progress from
 - ightharpoonup Prevention \Rightarrow Detection \Rightarrow Internal failure \Rightarrow External failure

Kinds of Quality Costs

- Prevention costs (ensure mistakes never creep in)
 - Quality planning, formal technical reviews, test equipment, training
- Appraisal costs (check whether they have)
 - Inspections, equipment calibration and maintenance, testing
- Failure costs (oops)
 - subdivided into internal failure costs and external failure costs
 - Internal failure costs
 - Incurred when an error is detected in a product prior to shipment
 - Include rework, repair, and failure mode analysis
 - External failure costs
 - Involves defects found after the product has been shipped
 - Include complaint resolution, product return and replacement, help line support, and warranty work

The SQA (Software Quality Assurance) Group

In an organisation with end-users/customers:

- Serves as the customer's in-house representative
- Assists the software team in achieving a high-quality product
- Views the software from the customer's point of view
 - Does the software adequately meet quality factors?
 - Has software development been conducted according to pre-established standards?
 - Have technical disciplines properly performed their roles as part of the SQA activity?
- Performs a set of of activities that address quality assurance planning, oversight, record keeping, analysis, and reporting (See next slide)

SQA Activities

- Prepares an SQA plan for a project
- Participates in the development of the project's software process description
- Reviews software engineering activities to verify compliance with the defined software process
- Audits designated software work products to verify compliance with those defined as part of the software process
- Ensures that deviations in software work and work products are documented and handled according to a documented procedure
- Records any noncompliance and reports to senior management
- Coordinates the control and management of change
- Helps to collect and analyze software metrics

Software Reliability, Availability, and Safety

Software Reliability, Availability, and Safety

Reliability, Availability and Safety are three particular and important aspects of quality.

Reliability and Availability

- Software failure
 - Defined: Nonconformance to software requirements
 - Given a set of valid requirements, all software failures can be traced to design or implementation problems (i.e., nothing wears out like it does in hardware)

Reliability

Software reliability

- ▶ Defined: The probability of failure-free operation of a software application in a specified environment for a specified time
- Estimated using historical and development data
- ➤ A simple measure is MTBF = MTTF + MTTR = Uptime + Downtime

```
(MTBF = mean time between failures)
(MTTF = mean time to failure)
(MTTR = mean time to repair)
```

- Example:
 - ▶ MTBF = 68 days + 3 days = 71 days
 - Failures per 100 days = (1/71) * 100 = 1.4

Availability

Software availability

- Defined: The probability that a software application is operating according to requirements at a given time
- Availability = [MTTF/ (MTTF + MTTR)] * 100%
- Example:
 - Avail. = [68 days / (68 days + 3 days)] * 100 % = 96%

Software Safety

- Focuses on identification and assessment of potential hazards to software operation
- It differs from software reliability
 - Software reliability uses statistical analysis to determine the likelihood that a software failure will occur; however, the failure may not necessarily result in a hazard or mishap
 - Software safety examines the ways in which failures result in conditions that can lead to a hazard or mishap; it identifies faults that may lead to failures
- Software failures are evaluated in the context of an entire computer-based system and its environment through the process of fault tree analysis or hazard analysis

Software Quality Assurance Plans

Practical ways of achieving Software Quality

Now we know what software quality is (what makes a software project high (or low) quality?), and some ways to characterise SWQ, how do we go about achieving software quality in practice.

Purpose of a SQA plan

- Provides a road map for instituting software quality assurance in an organization
- Developed by the SQA group to serve as a template for SQA activities that are instituted for each software project in an organization

You will be writing a SQA plan for the first part of your project for CITS5501

SQA Plan structure

Structured as follows:

- The purpose and scope of the plan
- ➤ A description of all software engineering work products that fall within the purview of SQA
- All applicable standards and practices that are applied during the software process
- SQA actions and tasks (including reviews and audits) and their placement throughout the software process
- The tools and methods that support SQA actions and tasks
- Methods for assembling, safeguarding, and maintaining all SQA-related records
- Organizational roles and responsibilities relative to product quality

Workshop: Github and SQA

Professional software engineers use version control systems to help manage software development and quality.

The most widely used system (although not necessarily the best) is **Github**.

So we will be using Github in the project for this unit.

Many of you will have used github (to some extent) before. The second part of today's class will be a primer / revision session on using Github for project management, and particularly for managing software quality assurance.

See lect05b-github-workshop.pdf for the slides for this workshop