
Introduction Github in a nutshell

CITS5501 Software Testing and Quality
Assurance

Github Primer for Software Quality Assurance

Unit coordinator: Rachel Cardell-Oliver

1 / 20



Introduction Github in a nutshell

Introduction

2 / 20



Introduction Github in a nutshell

Review

In the previous lecture we explored what makes a software project
high (or low) quality and some ways to characterise SWQ.

Professional software engineers use version control systems to help
manage software development and quality.

This workshop is a hands-on primer / revision session on using
Github for project management, and particularly for managing
software quality assurance.

3 / 20



Introduction Github in a nutshell

Github and SQA

Professional software engineers use version control systems to help
manage software development and quality.

The most widely used system (although not necessarily the best) is
Github. So we will be using Github in the project for this unit.

Most of you will have used Github (to some extent) before.

Using Github effectively, especially with groups, requires care to
ensure quality and avoid conflicts.

4 / 20

https://github.com/


Introduction Github in a nutshell

Github Training

You need your own GitHub account for this workshop and the
project.

Go to https://docs.github.com/en/get-started/start-your-
journey/creating-an-account-on-github for set up instructions if
required.

This workshop is based on the Github Hello World tutorial.

You can find many other useful guides online.

See the recommendations at the end of this lecture.

Email me at cits5501-pmc@uwa.edu.au if you come across other
good guides.

5 / 20

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/hello-world
mailto:cits5501-pmc@uwa.edu.au


Introduction Github in a nutshell

Github in a nutshell

6 / 20



Introduction Github in a nutshell

1. Repositories and Commits

1. Repositories and Commits

7 / 20



Introduction Github in a nutshell

1. Repositories and Commits

Repositories

A repository is a folder that contains related items, such as files,
images, videos, or even other folders.

A repository usually groups together items that belong to the same
“project” or thing you’re working on.

Github is best for managing code files so you may want to store
other artifacts elsewhere.

Every repository should include a README file giving a brief
description of the purpose of the project and how to use and run it.

8 / 20



Introduction Github in a nutshell

1. Repositories and Commits

Repository Settings

Repositories for your university work should be PRIVATE to you,
group members (for group projects) and your facilitator or UC (for
marking, as required).

Make sure you select the PRIVATE option when you set up your
repository.

Making your repository PUBLIC means your code is visible to other
students. This is academic misconduct on your part.

9 / 20



Introduction Github in a nutshell

1. Repositories and Commits

Local and Remote Repositories

A remote repository is hosted on a remote location and is shared
among multiple team members.

The repository you create for your team in https://github.com/ will
be your remote repository.

A local repository is hosted on a local machine for an individual
user.

You make changes and test your code locally and then commit to
the remote repository branch or make a pull request to commit to
the main branch when you are ready.

Beginners are advised to use Github Desktop to manage your local
repository, but you may prefer to use the command line interface.
See Using Git from the Command line

10 / 20

https://github.com/
https://training.github.com/downloads/github-git-cheat-sheet/


Introduction Github in a nutshell

1. Repositories and Commits

Commits

On GitHub, saved changes are called commits. Commit copies
local changes you have made to project files onto the repository in
GitHub (that is the online groundtruth version of your repository).

Each commit has an associated commit message, which is a
description explaining why a particular change was made.

Commit messages capture the history of your changes so that other
contributors can understand what you’ve done and why. It is
important to take the trouble to write meaningful commit messages
or your team may waste much time later trying to work out what
was done and why.

11 / 20



Introduction Github in a nutshell

2. Issues and Branches

2. Issues and Branches

12 / 20



Introduction Github in a nutshell

2. Issues and Branches

Branching

Branching lets you have different versions of a repository at one
time.

By default, your repository has one branch named main that is
considered to be the definitive branch. The code on main should
always be runnable, checked, and correct.

You can create additional branches from main in your repository.
These branches are used for programming work: implementing new
functionality and fixing bugs.

Commit changes (only) to your branch until everything is working
and you are ready to merge your updates to the main branch.

13 / 20



Introduction Github in a nutshell

2. Issues and Branches

Issues
Issues are used to define tasks to be carried out for your software
project. You should create issues in your repository to plan, discuss,
and track work. Tasks can include reporting bugs, planning work,
collecting feedback and tracking ideas.

Issues can have subtasks to break down the work and labels to
categorise the task (eg bug fix vs new functionality). You can create
templates (a sort of checklist) for defining issues.

Issues can be assigned to particular team member(s).

Software development work for a issues should be done in its own
branch (see above).

Discuss and review issues before you start work to minimise the risk
of merge conflicts (see below).

See Quickstart for GitHub Issues
14 / 20

https://docs.github.com/en/issues/tracking-your-work-with-issues/configuring-issues/quickstart


Introduction Github in a nutshell

3. Pull requests and Merging

3. Pull requests and Merging

15 / 20



Introduction Github in a nutshell

3. Pull requests and Merging

Pull Request
Pull requests are the heart of collaboration on GitHub.

When you open a pull request, you’re proposing your changes and
requesting that someone review and pull in your contribution and
merge them into their branch.

Remember that the main branch is considered to be the definitive
branch. The code on main should always be runnable, checked, and
correct.

When you start collaborating with others, a pull request is the time
you’d ask for their review. This allows your collaborators to
comment on, or propose changes to, your pull request before you
merge the changes into the main branch.

A pull request SHOULD generate discussion and usually some
changes to the code to improve its quality.

For your project you should explicitly define standards to be checked
in a pull request. For example, providing and passing test cases,
coding style checks, relevant security checks and so on. Learning
how to check for just enough quality but not too much, requires
long experience - start thinking about it now. You will get better at
this throughout your career.

You can create templates (a sort of checklist) for structuring pull
requests.

16 / 20



Introduction Github in a nutshell

3. Pull requests and Merging

Merging (and Merge Conflicts)
In this final step, you will merge your branch changes into the main
branch.

It is the responsibility of the author and reviewers to ensure this is
done carefully or problems can be introduced which are much harder
to fix later.

Sometimes, a pull request may introduce changes to code that
conflict with the existing code on main. This is caused a merge
conflict and can be very painful! You need to resolve the conflicts
by making changes to the code and discussion with your
collaborators.

Plan your tasks and branches to minimise the risk of merge conflicts.

Once you and your collaborators have checked that code from a
github branch select Merge Pull Request and finally Confirm merge.

In professional settings, you can delete a branch once the changes
have been merged to the main branch.

However, in this unit and for assessment, please DO NOT delete
branches because we will use the history of your changes to help
your learning.

17 / 20



Introduction Github in a nutshell

Further reading

Further reading

18 / 20



Introduction Github in a nutshell

Further reading

Github Training

A step by step guide to the key concepts is available: Github Hello
World Step by Step. Make sure you work through this tutorial by
yourself to consolidate your knowledge of today’s topics.

Beginners are advised to use Github Desktop for the local repository,
but you may prefer to use the command line interface. See Using
Git from the Command line

The Basics of GitHub includes a useful list of resources for further
training.

19 / 20

https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://github.com/uwa-computer-science/git-github-fundamentals


Introduction Github in a nutshell

Further reading

ACS Guides

ACS: Excellent introductory courses by Kishan Iyer Git and GitHub:
Introduction Git and GitHub: Working with Git Repositories Git and
GitHub: Using GitHub for Source Code Management

Join the Australian Computer Society (ACS) for free to access
these (and many more) training resources.
Go to http://www.acs.org.au/join-acs.html select Student
Supported ICT Membership This is free for UWA students. See
also the posters around the Department.

20 / 20

https://acs-preview.percipio.com/courses/24f5b7c1-d44d-47fb-9bb7-7c71d127bee2
https://acs-preview.percipio.com/courses/24f5b7c1-d44d-47fb-9bb7-7c71d127bee2
https://acs-preview.percipio.com/courses/72663338-f4fc-4402-8c39-81c325fa5e22/videos/eff50656-6b19-4dc3-8958-bc22099d7bc2
https://acs-preview.percipio.com/courses/72663338-f4fc-4402-8c39-81c325fa5e22/videos/eff50656-6b19-4dc3-8958-bc22099d7bc2
https://acs-preview.percipio.com/courses/72663338-f4fc-4402-8c39-81c325fa5e22/videos/eff50656-6b19-4dc3-8958-bc22099d7bc2
http://www.acs.org.au/join-acs.html

	Introduction
	Github in a nutshell
	1. Repositories and Commits
	2. Issues and Branches
	3. Pull requests and Merging
	Further reading


