
Grammars and syntaxes Mutation testing

CITS5501 Software Testing and Quality Assurance
Syntax-based testing

Unit coordinator: Arran Stewart

1 / 66

Grammars and syntaxes Mutation testing

Overview

▶ Syntax-based models
▶ Keeping a note of the rules and symbols we need is useful here

(or bring your pre-reading notes)
▶ Mutation testing

2 / 66

Grammars and syntaxes Mutation testing

Grammars and syntaxes

3 / 66

Grammars and syntaxes Mutation testing

Grammars, syntax and language

Developers use grammars and syntax of all the time, though they
may not realize it.

Whenever we see a requirement like “a date should be in the format
YYYY-MM-DD”, we’re making use of a grammar (though only very
informally expressed).

4 / 66

Grammars and syntaxes Mutation testing

Analysing a date

If some requirement says that a parameter to a function, or an item
in a database, should be “in the format YYYY-MM-DD”, what it
(usually) means, but more explicitly stated is:

▶ Any of the Y’s, M’s or D’s can be replaced by a digit in the
range 0–9 – if you provide a date that can’t be generated in
such a fashion, we might say you’ve provided a syntactically
ill-formed date.

▶ There are other rules about validity (e.g. if the first “M” is
replaced by a 1, then the second “M” can only be in the range
0–2), but we usually don’t consider those to be syntax errors.
▶ Dates which violate these rules are usually said to violate the

semantics of dates, or semantic constraints

(What is it that distinguishes between the two? We’ll come to that
later.)

5 / 66

Grammars and syntaxes Mutation testing

Analysing a date

If some requirement says that a parameter to a function, or an item
in a database, should be “in the format YYYY-MM-DD”, what it
(usually) means, but more explicitly stated is:

▶ Any of the Y’s, M’s or D’s can be replaced by a digit in the
range 0–9 – if you provide a date that can’t be generated in
such a fashion, we might say you’ve provided a syntactically
ill-formed date.

▶ There are other rules about validity (e.g. if the first “M” is
replaced by a 1, then the second “M” can only be in the range
0–2), but we usually don’t consider those to be syntax errors.
▶ Dates which violate these rules are usually said to violate the

semantics of dates, or semantic constraints

(What is it that distinguishes between the two? We’ll come to that
later.)

5 / 66

Grammars and syntaxes Mutation testing

Grammars

Grammars just give us a way of formally specifying what things are
and are not syntactically correct.

Every grammar defines what is called a language (though not always
a very interesting one) – a set of acceptable strings.

A grammar for the date might look like this:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<date> ::= <digit> <digit> <digit> <digit> "−"

<digit> <digit> "−"

<digit> <digit>

6 / 66

Grammars and syntaxes Mutation testing

Grammars

The following grammar is equivalent to the previous one – in that
they define the exact same set of strings – but provides a few hints
as to the semantics of bits of the string (and is probably a bit easier
to read).

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> ::= <digit> <digit>

<date> ::= <year> "−" <month> "−" <day>

7 / 66

Grammars and syntaxes Mutation testing

Notation

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> ::= <digit> <digit>

<date> ::= <year> "−" <month> "−" <day>

The notation is a simplified form of what is called BNF (Backus-Naur
Form).

The following symbols are used in this notation:

We read “::=” as “is defined as” or “can be expanded to”, and “|” as “or”.

So the first line says, “A ‘digit’ is defined as being either the string”0”, or
the string “1”, or . . . ”

(These symbols are sometimes called “meta-syntactic symbols”, meaning
symbols used to define a syntax.) 8 / 66

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Grammars and syntaxes Mutation testing

Notation

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> ::= <digit> <digit>

<date> ::= <year> "−" <month> "−" <day>

The things in strings are called terminal symbols – they are the
equivalent of “words” in our language.

They are like atoms, in that they are the smallest, indivisible parts
of our language.

In our case, the terminals are all strings containing a single digit.

9 / 66

Grammars and syntaxes Mutation testing

Notation

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> ::= <digit> <digit>

<date> ::= <year> "−" <month> "−" <day>

The things between angle brackets are called non-terminal symbols.

The above grammar contains five rules (also called “productions”, in the
textbook).

In the sorts of grammar we will consider,1 every rule is of the form:

non-terminal “::=” sequence of terminals and non-terminals
1Called context-free grammars or CNFs (see

https://en.wikipedia.org/wiki/Context-free_grammar).
10 / 66

https://en.wikipedia.org/wiki/Context-free_grammar

Grammars and syntaxes Mutation testing

Notation

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> ::= <digit> <digit>

<date> ::= <year> "−" <month> "−" <day>

To be precise: the simplest possible right-hand side (RHS) of a rule will be
a sequence of terminals and non-terminals, meaning “these strings,
concatenated together”.

(For example – the RHS of the last rule, which means “an expansion of
the ‘year’ rule, then a hyphen, then an expansion of the ‘month’ rule, then
a hyphen, then an expansion of the ‘day’ rule.)

11 / 66

Grammars and syntaxes Mutation testing

Notation

But we can also insert on the RHS the following symbols, between
or after terminals and non-terminals:

▶ bars to indicate “or” (alternatives)
▶ an asterisk (called the “Kleene star”) to indicate “zero or more

of the preceding thing”
▶ a plus sign to indicate “one or more of the preceding thing”
▶ a range of numbers (e.g. “3–4”) to indicate a number of

possible instances of the preceding thing.

12 / 66

Grammars and syntaxes Mutation testing

Notation

Examples

▶ "dog" | "cat" – either the string "dog", or the string "cat"
▶ "dog"* – zero or more instances of the string "dog"
▶ "dog"+ – one or more instances of the string "dog"
▶ "0"-"7" – digits from “0” to “7” inclusive

And we can use parentheses to group things.

▶ ("dog" | "cat")+ – one or more instances of these two
alternatives

13 / 66

Grammars and syntaxes Mutation testing

Notation – asterisk

An example: the following is a fairly typical way of defining valid
identifiers in many programming languages:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<letter> ::= "a" | "b" | ...

<underscore> ::= "_"

<identifier> ::= (<letter> | <underscore>)

(<letter> | <underscore> | <digit>)*

This means, “An identifier always starts with a letter or underscore;
it is followed by any number (possibly zero) of characters drawn
from the set of letters, digits and the underscore character”.

14 / 66

Grammars and syntaxes Mutation testing

Use in development

Much of the software we rely on makes use of grammars (though
not always explicitly).

Whenever we validate entries into web forms or databases, we are
often are defining a syntax to do so. (One common way is to use
what are called regexes – we will discuss them more later.)

15 / 66

Grammars and syntaxes Mutation testing

Use in development
Command-line programs often take arguments – sometimes
adhering to very complex rules, as we saw in the first lecture.

16 / 66

Grammars and syntaxes Mutation testing

Use in development

For very simple programs, we might analyse the arguments “by
hand”.

For complex programs – we typically use a command-line argument
parser to work out whether a user has supplied a valid set of
arguments (and what we should do with them).

17 / 66

Grammars and syntaxes Mutation testing

Use in development

Grammars are used to define whether something is a valid

▶ email
▶ HTML page
▶ email address

and many other formats.

18 / 66

Grammars and syntaxes Mutation testing

Use in development

Often, it will be useful to define what are called “domain-specific
languages” (DSLs) which describe entities in a domain and things
to do with them – e.g. Makefiles are an example of this.

Syntaxes are typically used to define such languages.

19 / 66

Grammars and syntaxes Mutation testing

Use in development

And of course, every programming language is defined by a
grammar or syntax – when we violate the syntax, the compiler tells
us we’ve committed a “syntax error”.

Syntactically well-formed Java class:

class MyClass { }

Syntactically ill-formed:

class { MyClass }

20 / 66

Grammars and syntaxes Mutation testing

Questions

▶ Q. What’s the dividing line between what we call “syntax”
(“Student numbers are of the form: NNNN-NNN-NN, where N

is a digit”) and semantics (“If the first digit of the month is 1,
the second can only be ‘0’ or ‘1’ or ‘2’ ”)?

▶ A. Usually, if a rule can be described using BNF, it’s called a
syntactical rule; if not, it’s a semantic rule.

Languages using such rules are called context-free languages.

(Why “context-free”? Because we can’t have rules like the one
just described, that say “If the previous item was ‘1’, then this
item can only be ‘0’ or ‘1’ or ‘2’ – the grammars we use never
require us to supply contextual information of this sort.)

21 / 66

Grammars and syntaxes Mutation testing

Questions

▶ Q. What’s the dividing line between what we call “syntax”
(“Student numbers are of the form: NNNN-NNN-NN, where N

is a digit”) and semantics (“If the first digit of the month is 1,
the second can only be ‘0’ or ‘1’ or ‘2’ ”)?

▶ A. Usually, if a rule can be described using BNF, it’s called a
syntactical rule; if not, it’s a semantic rule.

Languages using such rules are called context-free languages.

(Why “context-free”? Because we can’t have rules like the one
just described, that say “If the previous item was ‘1’, then this
item can only be ‘0’ or ‘1’ or ‘2’ – the grammars we use never
require us to supply contextual information of this sort.)

21 / 66

Grammars and syntaxes Mutation testing

Questions

▶ Q. Can we describe binary formats, as well as text?

▶ A. Yes, though BNF is not especially suited to describing
binary formats.
▶ BNF works well for things in textual format (including the

source code of programming language files, HTML documents,
JSON documents, and so on).

▶ For data in binary format (for instance, TCP packets or JPEG
files), a commonly-used formalism is ASN.1 (“Abstract Syntax
Notation One”).

▶ We won’t be examining ASN.1 in detail, but similar
considerations apply.

22 / 66

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Grammars and syntaxes Mutation testing

Questions

▶ Q. Can we describe binary formats, as well as text?

▶ A. Yes, though BNF is not especially suited to describing
binary formats.
▶ BNF works well for things in textual format (including the

source code of programming language files, HTML documents,
JSON documents, and so on).

▶ For data in binary format (for instance, TCP packets or JPEG
files), a commonly-used formalism is ASN.1 (“Abstract Syntax
Notation One”).

▶ We won’t be examining ASN.1 in detail, but similar
considerations apply.

22 / 66

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Grammars and syntaxes Mutation testing

Questions

▶ Q. Are there any other artifacts we can describe using a
grammar?

▶ A. Yes – we can often use grammars to describe data
structures.
▶ This follows on from the previous question.
▶ If we can use a grammar to describe, say, the JPEG format; and

if JPEGs can be stored as data structures; it follows we could
use grammars to describe the permissible instances of data
structures.

▶ In particular, recursive data structures can often be described
using a grammar.

23 / 66

Grammars and syntaxes Mutation testing

Questions

▶ Q. Are there any other artifacts we can describe using a
grammar?

▶ A. Yes – we can often use grammars to describe data
structures.
▶ This follows on from the previous question.
▶ If we can use a grammar to describe, say, the JPEG format; and

if JPEGs can be stored as data structures; it follows we could
use grammars to describe the permissible instances of data
structures.

▶ In particular, recursive data structures can often be described
using a grammar.

23 / 66

Grammars and syntaxes Mutation testing

Using the Syntax to Generate Tests

▶ Syntactic descriptions can be obtained from many sources:
▶ program source code
▶ design documents
▶ input descriptions (e.g. file formats, network message formats,

etc)
▶ Tests are created with two general goals

▶ Cover the syntax in some way
▶ Violate the syntax (invalid tests)

24 / 66

Grammars and syntaxes Mutation testing

Using the Syntax to Generate Tests

▶ Should we apply the techniques we see in this lecture to every
example of syntactic validation / use of grammars?

▶ Usually not – we will usually focus on areas of high risk
(e.g. that are easy to get wrong, or have bad impacts when we
get them wrong).

▶ Parsing command-line arguments is sufficiently important that
we should probably test it.

25 / 66

Grammars and syntaxes Mutation testing

Example – arithmetic expressions

Another example – we’ll define a language to represent simple
arithmetic expressions.

Some strings will be valid in our language (like “(3 + 2) - 5”) and
some will not (like “3++-(”).

Our terminal symbols will consist of the numerals 0-9, and the
symbols “+ - ()”.

26 / 66

Grammars and syntaxes Mutation testing

Example – arithmetic expressions

As before, we define a digit:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

27 / 66

Grammars and syntaxes Mutation testing

Example – arithmetic expressions

And we can say, “An expression is either a digit, or, a smaller
expression plus some other smaller expression.”

<expression> ::= <digit> | <expression> "+" <expression>

28 / 66

Grammars and syntaxes Mutation testing

Example – arithmetic expressions

Our whole grammar:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<expression> ::= <digit>

| <expression> "+" <expression>

| <expression> "−" <expression>

| "(" <expression> ")"

29 / 66

Grammars and syntaxes Mutation testing

More on BNF grammars

When we specify a grammar, there will normally be a start symbol,
representing the “top level” of whatever construct we’re specifiying.

▶ e.g. for some programming language:
<program_file> ::=

<import_statements><declarations><definitions>

▶ Each possible rewriting (i.e., each alternative) of a non-terminal is
often called a production.

30 / 66

Grammars and syntaxes Mutation testing

Use of grammars

▶ Grammars can be used to build recognizers (programs which
decide whether a string is in the grammar – i.e., parsers)
and also generators, which produce strings of symbols.

31 / 66

Grammars and syntaxes Mutation testing

Coverage criteria

▶ If we’re developing tests based on syntax . . .
▶ The most straightforward coverage criterion:

use every terminal and every production rule at least once

Terminal Symbol Coverage (TSC) Test requirements contain each
terminal symbol t in the grammar G.

Production Coverage (PDC) Test requirements contain each
production p in the grammar G.

32 / 66

Grammars and syntaxes Mutation testing

Coverage criteria (cont’d)

▶ Production coverage subsumes terminal symbol coverage;
if we’ve used every production, we’ve also used every terminal.

33 / 66

Grammars and syntaxes Mutation testing

Coverage criteria – an impractical one

▶ We could aim to cover all possible strings

Derivation Coverage (DC) Test requirements contain every possible
string that can be derived from the grammar G.

▶ But except in special cases, this will be impractical

34 / 66

Grammars and syntaxes Mutation testing

Bounds on coverage

▶ Example grammar:
<integer> ::= <digit>|<integer><digit>

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

▶ The number of tests to get TS coverage is bounded by the number of
terminal symbols (ten, here)

▶ To get production coverage, that depends on the number of
productions (here: 2 for the first rule, 10 for the second – so, 12)

▶ Whereas the number of strings that can be generated – needed for
derivation coverage – is actually infinite.
▶ (likewise for, say, the set of all possible Java programs)

▶ Even for finite grammars (e.g. some file formats), DC will usually
require an infeasibly large number of tests

35 / 66

Grammars and syntaxes Mutation testing

Data structures

▶ Typically, for any format we specify syntactically (like JPEG,
GIF etc.), we’ll have an accompanying data structure that
mirrors that the structure of the syntax, in order to manipulate
in-memory objects representing that format.

▶ E.g. see the JpegImageData class from the Apache Commons
Imaging library for Java, or the png_struct_def for the libpng

C library.

36 / 66

https://commons.apache.org/proper/commons-imaging/apidocs/index.html
https://sourceforge.net/p/libpng/code/ci/libpng16/tree/pngstruct.h#l142

Grammars and syntaxes Mutation testing

Trees

▶ We can draw a tree structure for an expression adhering to some
particular syntax called a parse tree:2

(Here, “S” stands for “sentence”, “VP” for “verb phrase”, “V” for
“verb”, “DP” for “determiner phrase” – basically something that
picks out a particular entity.)

2Image from https://commons.wikimedia.org/wiki/File:
Precedent_example_1_decl_sent.png

37 / 66

https://commons.wikimedia.org/wiki/File:Precedent_example_1_decl_sent.png
https://commons.wikimedia.org/wiki/File:Precedent_example_1_decl_sent.png

Grammars and syntaxes Mutation testing

Trees

▶ The parse tree shows what productions should be followed to
parse (or alternatively, to generate) a particular string.

38 / 66

Grammars and syntaxes Mutation testing

Generators

▶ Suppose we had the grammar:

<Sentence> ::= <NounPhrase><Predicate>

<NounPhrase> ::= "Alice" | "Bob" | "the hacker"

<Predicate> ::= <Verb><NounPhrase>

<Verb> ::= "hires" | "defeats"

▶ Then we can see that “Alice hires Bob” and “Bob defeats the hacker”
are valid strings in the language this grammar defines (modulo some
whitespace).

▶ And we can see how we could easily generate random valid sentences
that conform to these rules.

▶ Being able to generate things that follow a syntax-like structure is
extremely useful for testing.

39 / 66

Grammars and syntaxes Mutation testing

Generators – network traffic

▶ We can use it to create traffic generators, for instance – we could
generate random valid TCP traffic with which to test a router.

▶ TCP packets follow a syntax-like structure, so it’s fairly
straightforward to generate them randomly.
A TCP packet consists of: 2 bytes representing a source port (0
through 65535), 2 bytes representing a destination port, then 4 bytes
representing a “sequence number”, then . . . (see the TCP
specification for detailed rules).

▶ Not all the validity rules for a TCP packet can be expressed in a
syntactical way – for instance, it contains a checksum towards the
end, which is calculated based on previous information – but quite a
bit can.

▶ This is very handy for “stress” or “load” or “performance” testing –
generating large amounts of data, and seeing how our system
performs under the load.

40 / 66

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Grammars and syntaxes Mutation testing

Generators – http traffic

▶ HTTP requests for web pages also follow a syntax, so we could easily
generate random HTTP traffic (for instance, to stress-test a
web-server, and see how it performs under high load).

▶ The full syntax for HTTP requests is larger than this,3 but the start
of a simplified version of it would look something like:

<request> ::= <GETrequest> | <POSTrequest>

<GETrequest> ::= "GET" <space> <URI> <space> <HTTPversion>

<lineend> <getheaders> <getbody>

...

(i.e., HTTP requests are either GET or POST requests, and GET requests
start with the keyword GET then a space, then a URI, and so on. . .)

3See IETF RFC 2616,
https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

41 / 66

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Grammars and syntaxes Mutation testing

Generators – http traffic

▶ The vast majority of randomly generated HTTP requests would
not be for valid URIs, and would result in 404 errors.

▶ If we wanted to generate, not just random HTTP requests, but
requests that actually hit part of a website, we can add in
additional constraints to ensure that happens.

▶ (E.g. We might start by only generating URLS that begin with
https://myblog.github.io/, if we were testing a blog site
hosted on GitHub.)

42 / 66

Grammars and syntaxes Mutation testing

Generators

▶ Likewise, HTML and XML documents, JSON, and many other
formats all follow syntactical rules, so we can randomly
generate them.

▶ Likewise for custom formats we may come up with.
▶ e.g. If we were writing a word processor, we might want to be

able generate very large random documents in our
word-processor format, to see how our program holds up.

43 / 66

Grammars and syntaxes Mutation testing

Generators

▶ For common formats, there are often already data generators
with many capabilities:
▶ Tools for constructing and generating network traffic: Ostinato,

Scapy Traffic Generator, flowgrind, jtg . . . see this list for many
more.

▶ HTTP request generators: see for example httperf
▶ Random bitmap generators: see for example random.org

▶ If not, it is perfectly possible to write our own.

44 / 66

https://ostinato.org/
https://pypi.org/project/ScapyTrafficGenerator/
http://flowgrind.net/
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://www.grid.unina.it/software/ITG/link.php
https://github.com/httperf/httperf
https://www.random.org/bitmaps/

Grammars and syntaxes Mutation testing

Generators and data structures

Things to note when generating data structures:

▶ In languages with pointers or references, it may be possible to
have data structures that contain cycles, meaning they are no
longer trees but graphs.

▶ For instance, we could have two linked list nodes A and B, and
make A’s next reference point to B, and B’s point to A.
(A cyclic linked list.)

▶ It’s still possible to generate random data of that sort, but
doing so takes us beyond our current scope.

45 / 66

Grammars and syntaxes Mutation testing

More complex rules for validity

▶ There may be rules for validity of a format (like the existence
of checksums) that can’t be captured by a grammar.

▶ This is frequently the case, actually. BNF lets us describe what
are known as “context-free” grammars, and a specification for
a format may include requirements that are impossible or
inconvenient to specify using BNF.
▶ e.g. In a valid Java program, variables have to be declared

before they are used; it’s an error to assign a string literal to an
int; and many other rules.

▶ We may be able to use simple calculations to generate or verify
those.
(e.g. to verify or generate a checksum)

▶ Or we may have to apply more complex rules – these are
outside the scope of this unit.

46 / 66

Grammars and syntaxes Mutation testing

Using generators for testing

▶ Generating random, valid values is useful for performance
testing, as just described – but it is also useful for
property-based testing, which we will see more of later.

▶ What is property-based testing? It’s a sort of (usually
randomized) testing which checks that invariants about
functions hold.

47 / 66

Grammars and syntaxes Mutation testing

Applications of syntax-based testing

▶ Mutation-based testing
▶ Generators used for property-based testing and fuzzers

48 / 66

Grammars and syntaxes Mutation testing

Mutation testing

49 / 66

Grammars and syntaxes Mutation testing

Mutation testing

Mutation testing (also called “mutation analysis”) is a technique
for evaluating the quality of a suite of software tests.

▶ Suppose we have some program under a test, and a suite of
tests designed to identify defects in it.

▶ Mutation testing works by modifying the program under test in
small ways (e.g. flipping a less-than sign to a greater-than;
changing a hard-coded number from 0 to 1).
▶ These are usually designed to mimic typically programming

errors, such as typograhical errors, wrong choice of operator, or
off-by-one errors

▶ If our test suite doesn’t detect and reject the mutated code, we
consider it defective.

50 / 66

Grammars and syntaxes Mutation testing

Mutation testing – terminology

▶ Ground string: A string in the grammar
▶ (The term “ground” basically means “not having any variables”

– in this context, not having any non-terminals)
▶ Mutation operator: A rule that specifies syntactic variations of

strings generated from a grammar
▶ (e.g. “If the string has a less-than symbol in it, flip that intro a

greater-than symbol”)
▶ Mutant: The result of one application of a mutation operator

▶ A mutant is a string

51 / 66

Grammars and syntaxes Mutation testing

Killing Mutants

▶ An example of a ground string is – our program under test.
▶ . . . since it’s a string in the grammar of “syntactically valid

Java programs”
▶ We apply our mutation operator to the ground strings to

generate mutants, new valid strings
▶ Killing mutants: If we have some mutant generated from the

original ground string, and we look at one or several of our
tests, we can ask: do they “kill” the mutant?
▶ i.e. Does the test(s) give a different result for the mutant,

compared to the original?
▶ If it does, it’s said to “kill” the mutant.

52 / 66

Grammars and syntaxes Mutation testing

Mutation example

▶ A sample method to test (in a Java-like language):
int mult(int a, int b) { return a * b; }

▶ A possible test:
assertEquals(1, mult(1,1));

▶ Is this a useful test?

53 / 66

Grammars and syntaxes Mutation testing

Mutation example (2)

▶ ans.: No, it’s terrible.
▶ Consider the following mutation:

int mult(int a, int b) { return a * b; }

⇒ int mult(int a, int b) { return a ** b; }

(where ** is a “power” operator)
▶ 1*1 == 1**1 so our test will still pass -

▶ so it’s a pretty poor test

54 / 66

Grammars and syntaxes Mutation testing

Frameworks for mutation testing

Some example mutation testing frameworks are:

▶ PIT, for Java (originally stood for “Parallel Isolated Test”)
▶ Mutpy, for Python
▶ Stryker, for C#
▶ Mutagen, for Rust (motto: “Breaking your Rust code for fun &

profit”)

55 / 66

https://pitest.org/
https://github.com/mutpy/mutpy
https://stryker-mutator.io/
https://github.com/llogiq/mutagen

Grammars and syntaxes Mutation testing

Advantages and disadvantages

Advantages and disadvantages of mutation testing:

▶ Identifies
weak/ineffective tests

▶ Very effective at
finding problems

▶ Helps quantify how
useful your tests are

▶ Can be time-consuming
(large number of mutants to
generate, whole test suite
needs to be run many times)

▶ Results require some
familiarity with mutation
testing to be properly
understood.

56 / 66

Grammars and syntaxes Mutation testing

Syntax-based coverage criteria – mutant coverage

▶ We can define a coverage criterion in terms of killing mutants:

Mutation Coverage (MC) For each mutant m, the test
requirements contains exactly one requirement, to kill
m.

▶ Coverage in mutation equates to number of mutants killed
▶ The amount of mutants killed is called the mutation score

57 / 66

Grammars and syntaxes Mutation testing

Coverage criteria – creating invalid strings

▶ When creating invalid strings, two simple criteria –
▶ It makes sense to either use every operator once or every

production once

Mutation Production Coverage (MPC) For each mutation operator,
TR contains several requirements, to create one
mutated string m that includes every production that
can be mutated by that operator.

Mutation Operator Coverage (MOC) For each mutation operator,
TR contains exactly one requirement, to create a
mutated string m that is derived using the mutation
operator.

58 / 66

Grammars and syntaxes Mutation testing

Mutation testing example4 – IOT cat door

Suppose we have an Internet of Things (IoT)–enabled cat door.
The final cat door will be implemented as hardware with embedded
software; but we can still check our logic using testing techniques
we have seen before.

We have the following user story describing the purpose of the cat
door:

Using my home automation system (HAS),
I want to control when the cat can go outside,
because I want to keep the cat safe overnight.

4Adapted from Alex Bunardzic, “Mutation testing by example: Failure as
experimentation” (2019)

59 / 66

https://opensource.com/article/19/9/mutation-testing-example-failure-experimentation
https://opensource.com/article/19/9/mutation-testing-example-failure-experimentation

Grammars and syntaxes Mutation testing

Cat door interface

We represent the cat door using the following interface:
public interface ICatDoor {

/** When "day" is supplied, unlock the door;

* when "night" is supplied, lock the door */

public void control(String dayOrNight);

/** Returns either "locked" or "unlocked" */

public String getStatus();

}

60 / 66

Grammars and syntaxes Mutation testing

Testing scenario

We want to write tests revolving around the following scenario:

Scenario #1: Disable cat trap door during nighttime

Given that the day/night detector detects that it is nighttime
When the day/night detector notifies the HAS
Then HAS disables the IoT-capable cat door

(We won’t worry about how the day/night detector is implemented.
Perhaps it uses ambient light levels; perhaps it consults a database
of sunrise/sunset times for its current geographical location.)

61 / 66

Grammars and syntaxes Mutation testing

Cat door code under test

public class CatDoor implements ICatDoor {

// ...

public void control(String dayOrNight) {

if (dayOrNight.equals("night")) {

this.lock();

} else {

this.unlock();

}

}

}

62 / 66

Grammars and syntaxes Mutation testing

Cat door test code

public class TestGivenNighttimeDoorLocked {

@Test

public void test() {

ICatDoor door = new CatDoor();

door.control("night");

String expected = "locked";

String actual = door.getStatus();

assertEquals(expected, actual, "status should be locked");

}

}

63 / 66

Grammars and syntaxes Mutation testing

start PIT running

27:46 am PIT >> INFO : Completed in 2 seconds

==

− Mutators

==

> org.pitest.mutationtest.engine.gregor.mutators.rv.ROR3Mutator

>> Generated 1 Killed 1 (100%)

> KILLED 1 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 0

−−
> org.pitest.mutationtest.engine.gregor.mutators.VoidMethodCallMutator

>> Generated 2 Killed 2 (100%)

> KILLED 2 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

<more output snipped>

64 / 66

Grammars and syntaxes Mutation testing

PIT output

65 / 66

Grammars and syntaxes Mutation testing

PIT output

66 / 66

	Grammars and syntaxes
	Mutation testing

