CITS5501 Software Testing and Quality Assurance
Randomized testing

Unit coordinator: Arran Stewart

1/29

Overview

> Random testing
> Property-based testing
> Fuzzing

2/29

Randomized testing
000000000000 000000000

Randomized testing

3/29

Randomized testing
000000000000 000000000

ISP

When we looked at Input Space Partitioning (ISP), we saw

techniques for manually creating test cases for the functions in a
software component.

However, another possibility is to create tests randomly.

The technique of choosing elements from the input domain
randomly, and using them as tests — is known as random testing.

4/29

Randomized testing
00@000000000000000000

Random testing

Some advantages of random testing:

> Very easy to generate test cases
> (However, they may not tell you anything useful)

> Lacks human biases — doesn’t have preconceptions about what
input values might be “better”

5/29

Randomized testing
000e00000000000000000

Property-based testing

Suppose we are trying to apply the idea of random testing to a
method we saw in lecture 5, collapseSpaces:!

/** Remove/collapse multiple spaces.

*

* @param String string to remove multiple spaces from.
* @return String */

public static String collapseSpaces(String argStr);

1From the StringUtils class of Apache Velocity

(http://velocity.apache.org/), version 1.3.1.
6/29

http://velocity.apache.org/

Randomized testing
000000000000 000000000

Example — collapseSpaces

/** Remove/collapse multiple spaces.

*

* @param String string to remove multiple spaces from.
x @return String */

public static String collapseSpaces(String argStr);

One obvious problem with random testing is how to know what the
expected value of a test should be.

For instance, suppose we generate the random string "R1Z cz
vagxCwugL” ... how do we know what the expected result should be
of passing this to collapseSpaces, except by invoking
collapseSpaces?

7/29

Randomized testing
000008000000 000000000

Example — collapseSpaces

To apply the idea behind property-based testing, we don't try to
predict what the expected result should be.

Rather, we try to formulate laws or properties which should always
hold between the input and the output of a function.

For instance, suppose we ran collapseSpaces on some arbitrary
string, and discovered that the output string was longer than the
input string — should that be possible?

8/29

Randomized testing
000008000000 000000000

Example — collapseSpaces

To apply the idea behind property-based testing, we don't try to
predict what the expected result should be.

Rather, we try to formulate laws or properties which should always
hold between the input and the output of a function.

For instance, suppose we ran collapseSpaces on some arbitrary
string, and discovered that the output string was longer than the
input string — should that be possible?

It should not. So we can state this as a “law” about collapseSpaces:

The output of collapseSpaces should never be longer than the J
input.

8/29

Randomized testing
000000800000 000000000

Example — collapseSpaces

What other “laws” can we come up with?

9/29

Randomized testing
000000800000 000000000

Example — collapseSpaces

What other “laws” can we come up with?
Some possibilities:

> collapseSpaces should never remove a non-space character.
> How to test this?
> We can run a stripSpaces function (hopefully trivial to
implement) on the input and the output; if the law holds, the
results should be identical.

9/29

Randomized testing
0000000 e0000000000000

Example — collapseSpaces

So the task of doing property-based testing reduces to the following:

> For each of our two tests (let's call them
“outputNeverLongThanInput” and “neverRemovesNonSpace") ...
> ... generate many random strings.
» We can generate completely random strings, drawn from any
possible Unicode “character”
> We can also generate strings that have a high chance of
containing contiguous spaces
> Invoke collapseSpaces on the random string
> Assert that the “law” we have stated, relating input and
output, holds.
> (These “laws” are another sort of invariant — a rule about our
software that always should hold true if the software is correct.)

10/29

Randomized testing
0000000 0e000000000000

Benefits of property-based testing

We now gain the benefits of random testing (easy to generate test
cases), without the drawback of needing an “oracle” to tell us the
expected result for our test.

Other benefits:

> In practice, a quick and fairly easy way of checking our
functions for silly mistakes — and it forces us to clarify our
thinking about what the preconditions and postconditions of
our function are.

11/29

Randomized testing
000000000 e00000000000

Benefits of property-based testing

> Lets us “bootstrap” tricky functions:

> Write a not necessarily efficient, but very straightforward
implementation of a tricky function (say, for editDistance(),
the “edit distance between two strings”)

> Start developing a better, more efficient version of the function
(“fastEditDistance”)

> Use property-based testing to check that the following “law”
holds: “the result of applying fastEditDistance is always the
same as the result of applying editDistance”.

12/29

Randomized testing
000000000 0e0000000000

Property-based testing frameworks

Testing frameworks that perform property-based testing include:

> Hypothesis, for Python

QuickTheories and jqwik, for Java

jsverify, for JavaScript

QuickCheck, the inspiration for most of the others, for Haskelll
. Many more listed by David R. Maclver, the developer of

Hypothesis.

> We will look at some of these testing frameworks in more detail.

>
>
>
| 4

13/29

https://hypothesis.works/articles/intro/
https://github.com/quicktheories/QuickTheories
https://jqwik.net
https://github.com/jsverify/jsverify
http://hackage.haskell.org/package/QuickCheck
https://hypothesis.works/articles/quickcheck-in-every-language/

Randomized testing
00000000000 e000000000

Property-based testing in JUnit 5

JUnit 5 doesn't directly support property-based testing — the nearest
we could get is to use parameterized JUnit tests.

We could use the @MethodSource annotation to specify that our tests
should draw their paramaters from some particular method (call it
generateRandomString, say), and then use the java.util.Random
class to generate our random strings.

This isn't particularly convenient, however — a good property-based
testing framework will provide us with many methods for generating
random data of different sorts, perhaps then checking it for
usefulness (“Does this string actually contain some spaces?") and
then applying our “laws” to it.

14 /29

Randomized testing
000000000000 e00000000

QuickTheories example

QuickTheories can be used with JUnit as well as other test
frameworks (e.g. TestNG).

An example (from the QuickTheories documentation):

import static org.quicktheories.QuickTheory.qt;
import static org.quicktheories.generators.SourceDSL.x*;

public class SomeTests {
@Test
public void addingTwoPositiveIntsGivesAPositiveInt(){
qt()
.forAll(integers().allPositive()
, integers().allPositive())
.check((i,j) — 1+ 3 > 0);

15 /29

Randomized testing
0000000000000 e0000000

Components of property-based testing frameworks

Most property-based testing frameworks include the following
components:

> Generator: a way of generating random inputs to a function.

These range from the very basic (e.g. “all ints"), to those with
simple conditions (e.g. “all event ints"), to complex (e.g. “all
instances of the JPEG class (each of which represents a valid
JPEG graphic”).

Much the same techniques come in handy here as we saw with
generators for grammars.

> Checker: a way of testing whether a random input satisfies the
condition you've defined.

QuickTheories allows you to use JUnit assert... methods to

do this.
16 /29

Randomized testing
000000000000 00e000000

Components of property-based testing frameworks

> Shrinker: Once a test failure is found, good property-based
testing frameworks will attempt to shrink the input into the
smallest possible that will reproduce the error.

Let's see an example of this.

17/29

Randomized testing
0000000000000 00e00000

Shrinking

Suppose we want to test methods for a class which represents (for
instance) a Word document, or a JPEG graphic.

A very common property for file formats is that they should
“round-trip": if we write a JPEG object out to a file?, then read it
back in, we should get a new object which is identical to the original.

If we manage to generate a JPEG where this doesn't work, it could
be tricky to track down exactly what part or aspect of the file is
causing the failure.

So a shrinker will attempt to simplify a failing input to get a slightly
smaller input — see if that still fails — and continue until we have the
smallest input that still fails our test.

20r, more typically, we would convert it to a sequence of bytes in memory,

without ever writing it to a file; this makes for faster tests.
18/29

Randomized testing
000000000000 0000e0000

example

Suppose we have a method String reverse(String s) that reverses
a string — can you think of any general “law” we can state that
relates the input to the output?

19/29

Randomized testing
000000000000 0000e0000

example

Suppose we have a method String reverse(String s) that reverses
a string — can you think of any general “law” we can state that
relates the input to the output?

> One is: if we reverse an already-reversed string, we get the
original input back again.

String testSelflInverse(String s) {
String newString = reverse(reverse(s));
assertEqual(s, newString);

P Another is: the output string should always be the same length
as the input string.

19/29

Randomized testing
000000000000 00000e000

List.remove example

> Consider the following method specification:

List.remove(Object o): Search the list for elements which are equal
to object o (using .equals()). If there are any, then the first such
element is removed. Otherwise, the method does nothing.

P If Lpefore is the length of the list before we execute remove(), and
Laer is the length of the list after we execute it, then the following
invariant holds:

(Lafter = Lbefore) \ (Lafter = Lpefore — 1)
Let's call this invariant /nvq, for short.

> It is certainly good practice to write tests for remove() based on
Input Space Partitioning — e.g. constructing small lists that do or
don’t contain the element being searched for, and constructing test
inputs based on that.

20/29

Randomized testing
0000000000000 00000e00

Property-based testing

> But if we can identify invariants like /nvy, that we think will
always hold, then we can generate random data to improve our
confidence that this is so.

> If our test framework generates a few thousand sample lists,
and our invariant holds for all of them, we can be fairly
confident that this theory about our method is true.
(We cannot be certain — we might have failed to generate a
test case that exercises some particular fault — perhaps our
method fails on extremely long lists, and we never generated
those — but our confidence is definitely improved.)

21/29

Randomized testing
000000000000 0000000e0

Other uses of random testing

Random testing can be very useful when we want to generate large
volumes of valid or invalid data.

For instance for:

> Load testing — How does our software perform under high loads — the
largest volumes of data we expect to receive?
(We would like to ensure our software correctly handles the expected
load.)

> Stress testing — How does our software behave when we exceed the
expected maximum?
(We often would still like our system to degrade gracefully, even
though it may not be able to handle all the results.)

> Robustness testing — How well does our system handle malformed
inputs?
(We don't expect that it will give “correct” results — but we usually
expect it not to suffer, say, a segmentation fault/crash.)

22/29

Randomized testing
000000000000 00000000e

Other uses of random testing

Question: have you used software that crashed or otherwise
misbehaved when given large inputs?

23/29

Randomized testing
000000000000 00000000e

Other uses of random testing

Question: have you used software that crashed or otherwise
misbehaved when given large inputs?

If so, it probably could have benefitted from load testing, stress
testing, and/or robustness testing.

23/29

Fuzzing
@00000

Fuzzing

24/29

Fuzzing
[o] lelele]e]

Fuzzing

One sort of robustness testing is called fuzzing or fuzz testing. It usually
makes use of randomly generated inputs.

The general idea is this:

> Start with a program under test — e.g. one that converts PNG files to
.bmp (bitmap) files.

> Provide it with invalid or unexpected data, and monitor the
program’s behaviour.

> |f it crashes, throws expections that reach the end user, or fails
assertions we have included in our code (statements that test
invariants) — it's not handling the input data robustly.

> (We could also monitor the program for other bad behaviour such as
memory leaks — acquiring and not releasing RAM, leading to the
program “hogging” a computer’s available memory).

25 /29

Fuzzing
[e]e] lele]e]

\ETETIS

There are many clever variants on this basic idea.

> In the simplest case, we could just use completely random
inputs — but that's rarely effective, as they often don't look at
all similar to valid inputs, and don't trigger “interesting”
execution paths
> Mutation-based fuzzers. We can start with a just a small
sample of inputs (e.g. some valid and invalid JPEG files, using
our previous example), and randomly alter them to produce
new inputs.
> Can repeatedly mutate our existing inputs to produce more and
more “generations” of input files
> Useful for getting our inputs “past” a program’s initial syntax
checks
> Usually doesn't involve any “deep” understanding of the input
structure
26 /29

Fuzzing
[e]e]e] le]e]

\ETETIS

> “Smart” vs “dumb” fuzzers. Our fuzzer might have some
“understanding” of the input structure (i.e. the syntax of a
JPEG file) to aid it in generating new inputs.

> White-, grey-, or black-box.

» In the simplest case (black-box), we just monitor a program for
crashes, treating it as a “black box" without understanding its
internal structure.

> But ideally, we would like our fuzzer to get good code coverage
of the program under test.

> White- and grey-box fuzzers will analyse or instrument the code
of the program under test, and try to generate inputs which will
e.g. take the program down execution paths it hasn't been
before.

27/29

Fuzzing
0000e0

Some fuzz-testing tools

» AFL (standing for “American Fuzzy Lop")

> javafuzz — coverage guided fuzzer for java

> JQF - coverage-guided semantic fuzzing for Java

> honggfuzz — evolutionary, feedback-driven fuzzing based on
code coverage

28/29

https://github.com/google/AFL
https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/javafuzz
https://github.com/rohanpadhye/JQF
https://github.com/google/honggfuzz

Fuzzing
O0000e

Advaantages of fuzz testing

> Simple to do — in the simplest case, just provide some sample
inputs, and the path to your program, and start the fuzzer
going.

> Cheap — doesn't require extensive computational resources

> Effective — very good for finding security flaws in
memory-unchecked languages (e.g. C, C++).

29/29

	Randomized testing
	Fuzzing

