CITS5501 Software Testing and Quality
Assurance
Syntax-based testing

Arran Stewart and Rachel Cardell-Oliver

1/48

Overview of Syntax-Based Testing Topics

Motivation - What is syntax-based testing?

Theory - Formal Grammars and Coverage Criteria

| 2
>
> Applications of Syntax-based testing
> Input-Space Mutation Testing

>

Program-Based Mutation Testing (lecture 2)

Reading: Ammann and Offutt. Introduction to Software Testing,
2016. Ch 9 Syntax-Based Testing

2/48

Motivation
©0000000

Motivation

3/48

Motivation
0@000000

Modelling and Testing

Recall: In brief, we come up with tests by looking at requirements
and specifications, and thinking about the system — modelling it —
in different ways.

4/48

Motivation
[e]e] Yololelele]

Testing Strategies

So far we have seen several different types of models that can be
used for coming up with tests:

» Input Space Partitioning (Equivalence classes of inputs)

> Logic-based Testing (Look inside the parts of boolean
expressions making up a decision point)

» Graph-based Testing (on Program Control Flows)

» Syntax-based Testing (this lecture)

5/48

Motivation
[ee]eY Tolelele]

Syntax-based Testing

Syntax refers to the rules and regulations for writing an artefact
correctly

What sort of things can be tested with syntax-based test methods?

Anything thing that can be modelled by a syntactic description
such as a grammar:

> Input commands eg command line applications
> Syntax of types eg email addresses, datetime format, URLs etc
> Data and file formats eg XML

> Computer Program Syntax eg Java or Python programs etc

6/48

Motivation
0000®000

Where are Grammars used in Software Development?

Developers use grammars and syntax of all the time, though they
may not realize it.

Whenever we see a requirement such as “a date should be in the
format YYYY-MM-DD", we're making use of a grammar (though only
very informally expressed).

7/48

Motivation
00000®00

Analysing a date

If some requirement says that a parameter to a function, or an item
in a database, should be “in the format YYYY-MM-DD", what it
(usually) means, but more explicitly stated is:

> Any of the Y's, M’s or D’s can be replaced by a digit in the
range 0-9 — if you provide a date that can't be generated in

such a fashion, we might say you've provided a syntactically
ill-formed date.

> There are other rules about validity (e.g. if the first “M" is
replaced by a 1, then the second “M" can only be in the range

0-2), but we usually don't consider those to be syntax errors.
> Dates which violate these rules are usually said to violate the
semantics of dates, or semantic constraints

We'll see shortly how to define the syntax of dates using a grammar

8/48

Motivation
000000e0

Using Grammars to Generate Tests

> Syntactic descriptions can be obtained from many sources:

> program source code
> design documents
> input descriptions (e.g. file formats, network message formats,

etc)

» Grammars can be used to build recognizers (programs which
decide whether a string is in the grammar — i.e., parsers)
and also generators, which produce strings of symbols.

P Tests are created with two general goals

> Cover the syntax in some way
> Violate the syntax (invalid tests)

9/48

Motivation
0000000Oe

When to Use Grammars to Generate Tests

> Should we apply the techniques we see in this lecture to every
example of syntactic validation / use of grammars?

> Usually not — we will usually focus on areas of high risk
(e.g. that are easy to get wrong, or have bad impacts when we
get them wrong).

> Parsing command-line arguments is sufficiently important that
we should probably test it.

10/48

Theory
©0000000000

Theory

11/48

Theory
0®000000000

Grammars

Grammars just give us a way of formally specifying what things are
and are not syntactically correct

Every grammar defines what is called a /language
A language is a set of acceptable strings

A grammar for the date might look like this:

<digit> ::= IIOII | II1II | II2II | II3II | II4II | II5II | II6II |
II7II | II8II | Ilgll
<date> = <digit> <digit> <digit> <digit> "-—"

<digit> <digit>
<digit> <digit>

12/48

Theory
00@00000000

Grammars

The following grammar is equivalent to the previous one — in that
they define the exact same set of strings — but this one provides a
few hints as to the semantics of bits of the string (and is probably a
bit easier to read).

<digit> ::= "O" | "1" | "2" | "3" | "4" | "5" | "6" |
"7] 8" | "o"

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> 1i= <digit> <digit>

<date> ::= <year> "—" <month> "—" <day>

13/48

Theory

000@0000000

Notation
<digit> ::= "@" | "1" | "2" | "3" | "4" | "5" | "6" |
7" "8 | "9
<year> ::= <digit> <digit> <digit> <digit>
<month> ::= <digit> <digit>
<day> := <digit> <digit>
<date> = <year> "—" <month> "—" <day>

The notation is a simplified form of BNF (Backus-Naur Form)

The following symbols are used in this notation:

We read "::=" as "“is defined as” or “can be expanded to”, and

as “or".
So the first line says, "A 'digit’ is defined as being either the string”0", or
the string “1", or ..."

(These symbols are sometimes called “meta-syntactic symbols”, meaning
symbols used to define a syntax.)

14 /48

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Theory
0000®000000

Notation

<digit> ::= "@" | "1" | "2" | "3" | "4" | "5" | "6" |
“7v | "8t | "o

<year> = <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> <digit> <digit>

<date> ::= <year> "—" <month> "—" <day>

The things in quotes are called terminal symbols — they are the
equivalent of “words"” in our language.

They are like atoms, in that they are the smallest, indivisible parts
of our language.

In our case, the terminals are all strings containing a single digit.

15/48

Theory
00000®00000

Notation

<digit> ::= "@" | "1" | "2" | "3" | "4" | "5" | "6" |
7"l "8t | "o

<year> = <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> := <digit> <digit>

<date> = <year> "—" <month> "—" <day>

The things between angle brackets are called non-terminal symbols
The above grammar contains five rules (also called productions)

In the sorts of grammar we will consider,! every rule is of the form:

non-terminal “::=" sequence of terminals and non-terminals J

Called context-free grammars or CNFs. See
https://en.wikipedia.org/wiki/Context-free_grammar.
16/48

https://en.wikipedia.org/wiki/Context-free_grammar

Theory
000000@0000

Notation

<digit> ::= "O" | "1" | "2" | "3" | "4" | "5" | "6" |
"7t] "8 | "9

<year> ::= <digit> <digit> <digit> <digit>

<month> ::= <digit> <digit>

<day> 1= <digit> <digit>

<date> = <year> "—" <month> "—" <day>

To be precise: the simplest possible right-hand side (RHS) of a rule will be
a sequence of terminals and non-terminals, meaning “these strings,
concatenated together”.

(For example — the RHS of the last rule, which means “an expansion of
the ‘year’ rule, then a hyphen, then an expansion of the ‘month’ rule, then
a hyphen, then an expansion of the ‘day’ rule.)

When we specify a grammar, there will normally be a start symbol
representing the “top level” of whatever construct we're specifying.

17/48

Theory
0000000e000

More Notation

We can also insert on the RHS the following symbols, between or
after terminals and non-terminals:

> bars to indicate “or” (alternatives)

> an asterisk (called the “Kleene star”) to indicate “zero or more
of the preceding thing"

> a plus sign to indicate “one or more of the preceding thing”

> a range of numbers (e.g. “3-4") to indicate a number of
possible instances of the preceding thing.

18/48

Theory
00000000800

More Notation (cont)

Notation Examples

> "dog” | "cat” — either the string "dog”, or the string "cat”
> "dog"x — zero or more instances of the string "dog"

> "dog”+ — one or more instances of the string "dog”

> "gu-"7" —digits from “0” to “7" inclusive

And we can use parentheses to group things.

> ("dog” | "cat"”)+ — one or more instances of these two
alternatives

19/48

Theory
00000000080

Notation — asterisk

An example: the following is a fairly typical way of defining valid
identifiers in many programming languages:

<digit> ::= "O" | "1" | "2" | "3" | "4" | "5" | "6" |
"7v] 8" | "9"
<letter> ::= "a" | "b" |
<underscore> ::= "_"
<identifier> ::= (<letter> | <underscore>)
(<letter> | <underscore> | <digit>)=*
W

This means, “An identifier always starts with a letter or underscore;
it is followed by any number (possibly zero) of characters drawn
from the set of letters, digits and the underscore character”.

20/48

Theory
0000000000e

Example: Writing a Grammar for Program Inputs

Suppose you are writing an API for accessing a student’s grade in a
particular unit:

"getGrade" studentID unitCODE

getGrade is written in quotes to show this is a terminal symbol.
Write a grammar for this command line input format.

Compare your rules with another student. Did you miss any cases,
or find simpler ways to express?

Remember you are specifying the syntax not necessarily the
semantics of the inputs.

21/48

Coverage
©0000

Coverage

22/48

Coverage
0®000

BNF Coverage Criteria

» Once we have written a grammar to model our system
> If we're developing tests based on syntax ...
> The most straightforward coverage criterion is:
use every terminal and every production rule at least once

Terminal Symbol Coverage (TSC) Test requirements contain
each terminal symbol t in the grammar G.

Production Coverage (PDC) Test requirements contain each
production p in the grammar G.

23/48

Coverage
00®00

Coverage criteria (cont'd)

> Production coverage subsumes terminal symbol coverage;
if we've used every production, we've also used every terminal.

(Since every terminal must be part of some production.)

24/48

Coverage
000®0

Coverage criteria — an impractical one

> We could aim to cover all possible strings

Derivation Coverage (DC) Test requirements contain every
possible string that can be derived from grammar G.

> But except in special cases, this will be impractical

25 /48

Coverage
ooo0e

Example: Coverage Criteria

» Example grammar:

<integer> ::= <digit>|<integer><digit>
<digit> : := IIOII I lllll | II2II | ll3ll | II4II | II5II | Il6ll |
ll7ll I ll8ll | II9II

» The number of tests to get Terminal Symbol Coverage is bounded
by the number of terminal symbols (10, here)

> To get Production Coverage, that depends on the number of
productions (here: 2 for the first rule, 10 for the second — so, 12)

> Whereas the number of strings that can be generated — needed for
Derivation Coverage — is actually infinite for this grammar. The
same is true for, say, the set of all possible Java programs.

> Even for finite grammars (e.g. some file formats), Derivation
Coverage will usually require an infeasibly large number of tests

26 /48

Applications
.

Applications

27 /48

Applications
©0000000000000

Applications of Syntax-Based Testing

Applications of Syntax-Based Testing

28 /48

Applications
0®000000000000

Applications of Syntax-Based Testing

Background

Much of the software we rely on makes use of grammars (though
not always explicitly).

For very simple programs, we might analyse the arguments “by
hand".

For complex programs — we typically use a command-line argument
parser to work out whether a user has supplied a valid set of
arguments (and what we should do with them).

Whenever we validate entries into web forms or databases, we are
often are defining a syntax to do so.

29/48

Applications
00®00000000000

Applications of Syntax-Based Testing

First: A useful grammar writing tool

BNF Playground is a web app for designing and testing context free
grammars using Backus-Naur Form or Extended Backus-Naur Form

https://bnfplayground.pauliankline.com/
Task: Define the date grammar (seen earlier) in BNF Playground

Compile it then use the GENERATE RANDOM button to generate
valid dates.

Notice these generated dates are syntactically valid, but not always
semantically valid

You can also enter test strings to test for valid date productions.

30/48

https://bnfplayground.pauliankline.com/

Applications
000®0000000000

Applications of Syntax-Based Testing

Command Line Apps

Command-line programs often take arguments — sometimes
adhering to very complex rules, as we saw in the first lecture.

grep file pattern searcher
SYNOPSIS
grep [—abcdDEFGHhIiJL1MmnOopgRSsUVvwXxZz]
[<A num] [-B num] [—C num]
[—e pattern] [—f file] [—binary—files=valuel]

The syntax of command line apps can be defined by a grammar

See the mini-Docker example in the grammars and syntax-based
testing lab for this topic

31/48

Applications
0000®000000000

Applications of Syntax-Based Testing

Input Syntax

Grammars are used to define whether something is a valid

» phone number
> postcode

> URL

» HTML page
> email address

and many other formats.

32/48

Applications
00000®00000000

Applications of Syntax-Based Testing

Domain-Specific Languages

Often, grammars will be useful to define what are called
“domain-specific languages” (DSLs) which describe entities in a
domain and things to do with them — e.g. Makefiles are an example

of this.

Syntaxes are typically used to define such languages.

33/48

Applications
0000000000000
Applications of Syntax-Based Testing

Syntactically well-formed Java class

And of course, every programming language is defined by a
grammar or syntax — when we violate the syntax, the compiler tells
us we've committed a “syntax error”.

Syntactically well-formed Java class

class MyClass { }

Syntactically ill-formed:

class { MyClass }

34/48

Applications
0000000e000000

Applications of Syntax-Based Testing

Questions

> Q. What's the dividing line between what we call “syntax”
(“Student numbers are of the form: NNNN-NNN-NN, where N
is a digit”) and semantics (“If the first digit of the month is 1,
the second can only be ‘0" or ‘1" or 2"")?

35/48

Applications
0000000e000000

Applications of Syntax-Based Testing

Questions

> Q. What's the dividing line between what we call “syntax”
(“Student numbers are of the form: NNNN-NNN-NN, where N
is a digit”) and semantics (“If the first digit of the month is 1,
the second can only be ‘0" or ‘1" or 2"")?

> A. Usually, if a rule can be described using BNF, it's called a
syntactical rule; if not, it's a semantic rule.

Languages using such rules are called context-free languages.

(Why “context-free”? Because we can't have rules like the one
just described, that say “/f the previous item was ‘1’, then this
item can only be ‘0" or ‘1" or ‘2" — the grammars we use never
require us to supply contextual information of this sort.)

35/48

Applications
00000000e00000

Applications of Syntax-Based Testing

Generators — Network traffic

>

| 4

Being able to generate things that follow a syntax-like
structure is extremely useful for testing.

We can use BNF to create traffic generators, for instance — we
could generate random valid TCP traffic with which to test a
router.

TCP packets follow a syntax-like structure, so it's fairly
straightforward to generate them randomly.

A TCP packet consists of: 2 bytes representing a source port
(0 through 65535), 2 bytes representing a destination port,
then 4 bytes representing a “sequence number”, then ... (see
the TCP specification for detailed rules).

36/48

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Applications
000000000 e0000

Applications of Syntax-Based Testing

Generators — Network traffic (cont)

> Not all the validity rules for a TCP packet can be expressed in
a syntactic way — for instance, it contains a checksum towards
the end, which is calculated based on previous information —
but quite a bit can.

> This is very handy for “stress” or “load” or “performance”
testing — generating large amounts of data, and seeing how our
system performs under the load.

37/48

Applications
0000000000e000

Applications of Syntax-Based Testing

Generators — http traffic

» HTTP requests for web pages also follow a syntax, so we could easily
generate random HTTP traffic (for instance, to stress-test a
web-server, and see how it performs under high load).

» The full syntax for HTTP requests is larger than this,? but the start
of a simplified version of it would look something like:

<request> ::= <GETrequest> | <P0OSTrequest>
<GETrequest> ::= "GET" <space> <URI> <space> <HTTPversion>
<lineend> <getheaders> <getbody>

(i.e., HTTP requests are either GET or POST requests, and GET requests
start with the keyword GET then a space, then a URI, and so on...)

2See IETF RFC 2616,

https://www.w3.org/Protocols/rfc2616 /rfc2616-sec5.html
38/48

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Applications
0000000000000

Applications of Syntax-Based Testing

Generators — http traffic (cont)

| 2

| 2

The vast majority of randomly generated HTTP requests would
not be for valid URIs, and would result in 404 errors.

If we wanted to generate, not just random HTTP requests, but
requests that actually hit part of a website, we can add in
additional constraints to ensure that happens.

(E.g. We might start by only generating URLS that begin with
https://myblog.github.io/, if we were testing a blog site
hosted on GitHub.)

39/48

Applications
0000000000000

Applications of Syntax-Based Testing

File Generators

> Likewise, HTML and XML documents, JSON, and many other
formats all follow syntactical rules, so we can randomly
generate them.
> Likewise for custom formats we may come up with.
> e.g. If we were writing a word processor, we might want to be
able generate very large random documents in our
word-processor format, to see how our program holds up.

40/48

Applications
0000000000000e
Applications of Syntax-Based Testing

File Generator Tools

» For common formats, there are often already data generators
with many capabilities:

» Tools for constructing and generating network traffic: Ostinato,

Scapy Traffic Generator, flowgrind, jtg ... see this list for many
more.

» HTTP request generators: see for example httperf
» Random bitmap generators: see for example random.org

> If not, it is perfectly possible to write our own.

41/48

https://ostinato.org/
https://pypi.org/project/ScapyTrafficGenerator/
http://flowgrind.net/
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://www.grid.unina.it/software/ITG/link.php
https://github.com/httperf/httperf
https://www.random.org/bitmaps/

Mutating Inputs
©0000

Mutating Inputs

42/48

Mutating Inputs
0®000

Motivation

> It is quite common to require a program to reject malformed
inputs, and this property should definitely be tested as a form
of stress testing.

> Malformed inputs may slip past the attention of programmers
who are focused on happy path

> From a practical perspective, invalid inputs sometimes matter a
great deal because they hold the key to unintended
functionality. For example, unhandled invalid inputs often
represent security vulnerabilities

43/48

Mutating Inputs
00®00

Mutation operators

» When mutating grammars, the mutants are the tests and we
create valid and invalid strings

» How to mutate grammar rules: (see A and O for details)

> Replace term/nonterm
> Delete term/nonterm
> Duplicate term/nonterm

Reading: Ammann and Offutt. Section 9.5

44 /48

Mutating Inputs
000®0

Example: Generating Malformed-Inputs

A and O. Sec 9.5 Question 3

Consider the following BNF with start symbol A:

A ::= B"@"C"."B

B ::=BL | L

C::=B | B"."B

Losi= "a" | "b" | "c" | ... | "y" | "z"

45 /48

Mutating Inputs
[elelelel]

Example: Generating Malformed-Inputs (cont)

Consider the following six possible test cases from the grammar on
the last page:

tl = a@a.a

t2 = aa.bb@cc.dd
t3 = mm@pp

t4 = aaa@bb.cc.dd
t5 = bill

t6 = @x.y

For each of the six tests, state whether the test sequence is either
1. "in" the BNF, and give a derivation, or

2. sequence is “out” of the BNF, and give a mutant derivation
that results in that test. Use only one mutation per test, and

use it only one time per test.
46 /48

Summary
0

Summary

47 /48

Summary
oce

Summary of Syntax-Based Testing Topics

Motivation - What is syntax-based testing?

Theory - Formal Grammars and Coverage Criteria

>
>
> Applications of Syntax-based testing
> Input-Space Mutation Testing

>

Program-Based Mutation Testing (lecture 2)

48/48

	Motivation
	Theory
	Coverage
	Applications
	Applications of Syntax-Based Testing

	Mutating Inputs
	Summary

