
Other sorts of testing

CITS5501 Software Testing and Quality Assurance
System, integration and regression testing

Unit coordinator: Arran Stewart

1 / 54



Other sorts of testing

Overview

▶ Integration tests: what are they, why do them, what defects do
they help find?

▶ Testing strategy
▶ System testing
▶ Other types of testing:

▶ Regression testing
▶ “Smoke” testing
▶ End-to-end
▶ Alpha/beta

2 / 54



Other sorts of testing

Types of tests

Recall the “test pyramid” from lecture 3:

3 / 54



Other sorts of testing

What is integration testing?

Recall that unit tests test some small “unit” of software

▶ Purpose: check the behaviour of that unit – exercise it and
look for deviations from its specification

▶ We normally mock other external classes used in the test

Integration testing focuses on the flow of data and information
between components, and their interface

▶ It asks, “Do the components work properly together?”
▶ The goal is to test the interfaces between components, and the

interaction of components.

4 / 54



Other sorts of testing

Why do integration testing?

▶ Unit tests only test some unit in isolation – not how it interacts
with other units.

▶ Many failures arise from faults in the interaction between
components

▶ We don’t unit test third-party components we didn’t write –
but we should test how those components interact with others.

▶ Picks up problems we otherwise might not find til system
testing (when they will be more expensive to fix)

5 / 54



Other sorts of testing

Integration testing

▶ The entire system is viewed as a collection of components or
subsystems (e.g. sets of classes).

▶ The order in which the components are selected for testing and
integration determines the testing strategy – e.g. top-down,
bottom-up (more on these later)

6 / 54



Other sorts of testing

Examples of integration faults

What sort of defects might integration tests help identify?

We consider some examples.

Example

One component A tries to invokes another component (B), but
misidentifies B.

In statically typed languages, the compiler will tell us if we’re trying to
invoke a non-existent class or method (e.g. javac will complain of
undefined symbols).

But in dynamically typed languages like Python, or where we are
e.g. invoking an HTTP API, this might not be detected until runtime.

7 / 54



Other sorts of testing

Examples of integration faults

Example

One component A invokes another component (B), but does so incorrectly.

The developer of A might have misread the documentation for component
B, or the API for B might have changed.

Component B might specify that calls have to happen in a particular order,
and A fails to do this. (E.g. Often, C libraries require the library to
initialized in some way before any other functions are called.)

Sometimes the use of mocks (test doubles) might pick this up, but work
put into mocks does have diminishing returns – at some point it may be
simpler to rely on integration tests.

Component A might not properly handle all the possible errors or
exceptions thrown by B.

8 / 54



Other sorts of testing

Examples of integration faults

Example

Components have inconsistent interpretation of parameters or values.

Can be seen as a sub-category of the previous example.

Component B might specify that a parameter should be in terms of
particular units1 (say, milliseconds or pounds per square inch), and
component A assumes different units. (This was the cause of a failure in
NASA’s Mars Climate Orbiter.)

The parameters might be in a form such as XML or JSON (especially
common for HTTP APIs), and the schema used to validate the parameters
might have changed.

1When we discuss formal methods and type systems, we will look at ways of
preventing this sort of error.

9 / 54

http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/index.html


Other sorts of testing

Examples of integration faults

Example

Two components have conflicting side effects.

For instance, both components might try to make use of the same
file or database.

In the case of a file, this could lead to file corruption; in the case of
a database (or an OS where open files are automatically locked), it
could lead to deadlock or other concurrency issues.

10 / 54



Other sorts of testing

Examples of integration faults

Example

One component A invokes another component (B), but communication is
slow, unreliable, requires authentication, or depends on exact timing to be
correct.

If a system is distributed over the network, or even just across different
processes or threads, communication and concurrency problems may be
identified during integration testing that aren’t obvious when unit testing.

11 / 54



Other sorts of testing

Examples of integration faults, cont’d

Example

Non-functional properties (e.g. performance, security) fail to hold
when components are used together (emergent failures).

▶ We said that many qualities of a system (e.g. performance,
security) can’t be localised to a single component, but arise
from the interaction of components.

▶ It follows that failures relating to those qualities (poor
performance, poor security) sometimes can only be detected
from the interaction of components

12 / 54



Other sorts of testing

Testing strategy

▶ A common approach – begin by ‘testing-in-the-small’ and move
toward ‘testing-in-the-large’
▶ Start with units (functions/classes)
▶ Then start integrating them

13 / 54



Other sorts of testing

Testing strategy

▶ While doing unit testing, we will typically make use of
“mocks”/doubles in place of other units or modules

▶ In integration testing, we can test how two (or more) units or
modules work together
▶ The units or modules under test will not be mocked, obviously,

since what we want to know is whether they work properly
together

▶ But they might rely on additional components (e.g. databases)
which are mocked.

▶ The closer we get to the top of the test pyramid, the fewer
mocks we use, in favour of using components which are as
close to the production environment as we can get.

This is an illustration of a “bottom-up” approach. We now compare
several different integration approaches.

14 / 54



Other sorts of testing

Integration testing strategies

Main options:

▶ Big bang integration (nonincremental)
▶ Bottom up integration
▶ Top down integration
▶ Sandwich testing
▶ Variations of the above

15 / 54



Other sorts of testing

Drivers and stubs

Terminology sometimes used in integration testing:

▶ Driver: A program that makes calls into the module being
tested and reports the results
▶ The driver simulates some module that (in the final system) will

call the module under test
▶ Stub: A module that has the same interface as the module

under test, but is simpler
▶ The stub simulates a module which is called by the module

under test

16 / 54



Other sorts of testing

“Big Bang” Integration Testing

The approach:

▶ Do no integration testing until all modules have been
completed;
then try and test everything at once.

Problems:

▶ Expensive, if faults could’ve been detected earlier
▶ Poor ability to observe faults and diagnose/localize them

17 / 54



Other sorts of testing

Top-down integration

▶ Test the top layer or controlling subsystem first
▶ It’s the “top” module in the sense that it uses or calls into other

modules
▶ Use stubs to simulate components we haven’t

implemented/integrated yet
▶ Then start implementing the subsystems called by that top

system, and test them in the same way . . .
▶ And continue “down” until everything is done.

18 / 54



Other sorts of testing

Top-down integration

Top

stub A stub B stub C

Begin with the top level,
test it by letting it call
stubs.
(From material earlier on
test doubles: our stubs can
be spies, that allow us
check how they’re being
called and whether it’s
being done correctly.)

19 / 54



Other sorts of testing

Top-down integration

Top

A stub B stub C

stub X stub Y

As we implement and
incorporate more modules,
test them using stubs.

20 / 54



Other sorts of testing

Pros and cons of top-down integration testing
Pro:

▶ Test cases can be defined in terms of the functionality of the system
(functional requirements)

Cons:

▶ Writing stubs can be difficult: stubs should allow for a wide range of
conditions to be tested.

▶ Possibly a very large number of stubs may be required, especially if
the lowest level of the system contains many methods.

▶ One solution to avoid too many stubs: Modified top-down testing
strategy
▶ Test each layer of the system decomposition individually before

merging the layers
▶ Disadvantage of modified top-down testing: Both stubs and

drivers are needed
21 / 54



Other sorts of testing

Bottom-up integration

▶ Start by implementing and testing the modules/subsystems in
the “lowest” layer, individually

▶ Use test drivers to simulate calling into them
▶ Then start replacing drivers with actual implementations, and

work “upwards”

22 / 54



Other sorts of testing

Bottom-up integration

Driver

X

Start by implementing modules at
the bottom of the “uses”
hierarchy.

They will be tested by drivers,
which simulate making calls into
the module under test.

23 / 54



Other sorts of testing

Bottom-up integration

Driver

X

Driver

Y

As we implement more modules,
we need to write drivers for them,
too.

24 / 54



Other sorts of testing

Bottom-up integration

Driver

A

X Y

But once we’ve finished a
“mid-layer” module, it replaces
the driver modules which
previously simulated it.

25 / 54



Other sorts of testing

Pros and cons of bottom up integration testing

▶ Pro: Systems tested as they are ready
▶ Con: Typically tests one important subsystem (UI) last

26 / 54



Other sorts of testing

“Sandwich” integration

▶ Combine top-down with bottom-up – work from both “ends”
inwards

27 / 54



Other sorts of testing

“Sandwich” integration

(Partial) Top

Stub C

Y

We may end up not
needing as many stubs or
drivers as in previous
approaches.

28 / 54



Other sorts of testing

Steps in integration testing

1. Based on the integration strategy, select a component to be
tested. Unit test all the classes in the component.

2. Put selected component together; do any preliminary fix-up
necessary to make the integration test operational (drivers,
stubs)

3. Do functional testing: Define test cases that exercise all uses
cases with the selected component

4. Do structural testing: Define test cases that exercise the
selected component

5. Execute performance tests
6. Keep records of the test cases and testing activities.
7. Repeat steps 1 to 7 until the full system is tested.

The primary goal of integration testing is to identify errors in
the (current) component configuration.

29 / 54



Other sorts of testing

Which integration strategy should you use?

A useful question to ask is: what aspects or components of the
system are most risky?

▶ We typically want to reduce risk by developing and testing
(and/or prototyping) those early, so we can thoroughly test
them and their interaction with other components

▶ And if there are parts of the system that are very well
understood, we might leave them til later and/or start work in
parallel

Other factors to consider:

▶ Scheduling constraints (we may know hardware or third-party
components needed will not be available til a later date)

▶ Estimated amount of test harness code needed (stubs &
drivers)

30 / 54



Other sorts of testing

Which integration strategy should you use?, cont’d

Bottom up approach

▶ Good for object oriented design methodologies
▶ Test driver interfaces must match component interfaces
▶ Top-level components are usually important and cannot be

neglected up to the end of testing
▶ Detection of design errors postponed until end of testing

31 / 54



Other sorts of testing

Which integration strategy should you use?, cont’d

Top down approach

▶ Test cases can be defined in terms of functions examined
▶ Need to maintain correctness of test stubs
▶ Writing stubs can be difficult

32 / 54



Other sorts of testing

Which integration strategy should you use?, cont’d

Sandwich

▶ Top and bottom layer tests can be done in parallel
▶ More flexible

33 / 54



Other sorts of testing

System testing

System tests aim to test the entire system against its requirements
and specifications.

Some categories of system tests:

▶ Tests of functional requirements
▶ Tests of non-functional requirements
▶ Acceptance tests (validates client expectations)

34 / 54



Other sorts of testing

Tests of functional requirements

Sometimes called “functional testing”.

▶ Treats the whole system like a function or “black box” – so we
can apply the same sorts of test design approaches (e.g. ISP)
we have used for e.g. unit tests.

▶ By the time we do system testing, we may have additional
system documentation (e.g. user manuals, online help) which
can be used in test design

35 / 54



Other sorts of testing

Tests of non-functional requirements

▶ Recall that many non-functional requirements (security,
scalability, maintainability, performance) are emergent
properties: they aren’t a property of any single component in
isolation, but rather emerge from the way multiple components
interact as a whole

▶ This means that towards the bottom of the test pyramid, we’ll
often be more focussed on testing functional
requirements/specifications

▶ But as we move towards the top of the pyramid, it becomes
possible to test for non-functional requirements.

36 / 54



Other sorts of testing

Tests of non-functional requirements

Some sorts of non-functional, system-level test:

▶ Load testing – How does our software perform under high loads
– the largest volumes of data we expect to receive? Does it
perform correctly?

▶ Stress testing – How does our software behave when we exceed
the expected maximum?
Does it degrade gracefully?

▶ Robustness testing – How well does our system handle
malformed inputs?
Does it avoid undesirable behaviours (e.g. segfaults, security
holes, displaying raw stack traces to end users)?

37 / 54



Other sorts of testing

Testing non-functional requirements

What do tests of this sort look like?

Good tests follow exactly the same pattern we’ve seen previously –
Arrange, Act, Assert.

For a unit or integration test, we usually “Act” (invoke behaviour)
by calling a method or function.

But for tests of non-functional requirements, we could be

▶ invoking the whole program and measuring particular properties
(e.g. how long it takes to execute)

▶ starting a program (e.g. a web app), making requests against it,
and measuring the response to those requests

38 / 54



Other sorts of testing

Frameworks for non-functional testing

Sometimes we might write our tests of non-functional requirements
in the same language(s) as our system, sometimes not.

Scripting languages like Bash, Python, and Perl are especially
convenient for executing programs, launching other test utilities,
and extracting performance data from the OS.

So even if our system is written in Java, it might be convenient to
write these tests using a Perl or Python test framework.

39 / 54



Other sorts of testing

Testing non-functional requirements

Besides load, stress, and robustness testing, some other sorts of
system testing include:

▶ Recovery testing
▶ forces the software to fail in a variety of ways and verifies that

recovery is properly performed
▶ Security testing

▶ verify that the system meets security requirements and is
protected from improper penetration

▶ Performance Testing
▶ test the run-time performance of software within the context of

an integrated system

40 / 54



Other sorts of testing

Load, stress and robustness testing

For load and stress testing, we will normally generate random
traffic/data for our system, and conduct tests which measure
performance against requirements.

For robustness testing, fuzzing (and other sorts of randomized
testing) can be very effective.

41 / 54



Other sorts of testing

Security testing

Note that security problems cannot (typically) be avoided through
testing alone – good system security requires us to be mindful of
security and incorporate it at all stages of the software development
lifecycle.

42 / 54



Other sorts of testing

Types of security testing

Some typical sorts of security testing:

▶ Vulnerability scanning: using automated software which aims
to detect known security vulnerabilities in a system.
▶ Vulnerabilities detected can include misconfigured software,

versions of particular packages known to be insecure, and more
▶ The term “vulnerability scanner” normally means a program

which is run against a live (running) system.
▶ Some popular vulnerability scanners include Nessus and

Nexpose (both commercial), or Nmap and Metasploit (partially
or wholly open source)

43 / 54

https://www.tenable.com/products/nessus
https://www.rapid7.com/products/nexpose/
https://nmap.org
https://www.metasploit.com


Other sorts of testing

Types of security testing, cont’d

▶ Penetration testing
▶ This simulates an attack by a malicious party. It usually involves

evaluating a system (including vulnerability scanning) and
exploiting found vulnerabilities to gain access to the system and
breach data confidentiality, data integrity, or the availability of
services.

▶ Fuzzing
▶ Fuzzing, which we’ve looked at previously, can often identify

security vulnerabilities. The most common cause of program
crashes is improper access to memory locations, and these can
often be exploited so as to compromise security.

44 / 54



Other sorts of testing

Secure software development techniques

Security tests should be part of a broader approach to security
which might include:

▶ Threat modelling: a structured way of identifying threats and
mitigations that could affect a system, and then organizing and
communicating that information. (The OWASP page on threat
modelling has more information on this.)

▶ Security reviews: review of code (or other artifacts, e.g. design
documents or specifications) by a human reviewer, looking for
insecure or problematic code.

▶ Static code analysis: using programs which analyse code
statically (i.e., without running it), and aim to detect code that
is likely to cause security problems or is known to be
problematic in other ways.

45 / 54

https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling


Other sorts of testing

Secure software development techniques, cont’d

▶ Compliance or conformance testing: assessing whether a
system conforms to particular standards.

▶ Security audits: a type of security review; a security audit is a
structured process for reviewing a system according to some
defined standard.

46 / 54



Other sorts of testing

Other sorts of testing

47 / 54



Other sorts of testing

Other sorts of testing

We discuss some other sorts of testing you may encounter.

48 / 54



Other sorts of testing

Regression testing

▶ Mentioned in previous lectures:
Regression testing is the re-execution of some subset of tests
that have already been conducted, to ensure that changes have
not propagated unintended side effects

▶ Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data
that support it) is changed.

▶ Regression testing helps to ensure that changes do not
introduce unintended behavior or additional errors.

▶ Regression testing may be conducted manually, by re-executing
a subset of all test cases or using automated tools.

49 / 54



Other sorts of testing

Smoke Testing

A common approach for creating “daily builds” for product software
Smoke testing steps:

▶ Software components that have been translated into code are
integrated into a “build.”
▶ A build includes all data files, libraries, reusable modules, and

engineered components that are required to implement one or
more product functions.

▶ A series of tests is designed to expose errors that will keep the
build from properly performing its function.
▶ The intent should be to uncover “show stopper” errors that

have the highest likelihood of throwing the software project
behind schedule.

▶ The build is integrated with other builds and the entire product
(in its current form) is smoke tested daily.
▶ The integration approach may be top down or bottom up.

50 / 54



Other sorts of testing

Other sorts of testing

End-to-end testing

▶ Checks how a system or component behaves in a particular
user-focused scenario (e.g. use case, or user story), usually in
a near-production environment, and whether it behaves as
expected.

▶ The focus differs a little from typical “system tests”
▶ System tests show that the system satisfies some requirement

or specification
▶ End-to-end tests demonstrates that some particular task can

be done by or using the system
▶ e.g. Can a user successfully login, go to the product page, add

a product to the shopping cart, pay for items, and log out.

51 / 54



Other sorts of testing

Other sorts of testing, cont’d

Validation testing

▶ Ensures that the product actually meets the client’s needs
▶ Demonstrates that the system fulfills its intended use when

deployed in an appropriate environment

Alpha and beta testing

▶ Focus is on customer usage
▶ Alpha testing = done by employees of development

organisation, simulates typical use tasks
▶ Beta testing = done by releasing to a limited number of real

users

52 / 54



Other sorts of testing

Other sorts of testing, cont’d

Canary testing
▶ A new version of software, or new features, is initially released only

to a small subset of users.2
▶ This might be a cohort who voluntarily elect to test new features,

might be selected from e.g. a particular timezone, or might be
selected at random.

▶ Ideally, a good testing regime will have already removed serious
defects from the new software.

▶ But if they have got in, then exposing only a subset of users to
problems can be preferable to exposing the entire user base.

▶ (Question: do you know of any system release problems which could
have been avoided through canary testing?)

2Origin of the name: canaries were used in coal mines as an “early warning”
to test for dangerous levels of odourless but toxic gases.

53 / 54



Other sorts of testing

Other sorts of testing, cont’d

A/B testing

▶ A controlled experiment is done of two different versions of
some software or interface – a control group (“A”) and a
“treatment” group using a novel version (“B”)

▶ The aim is to obtain statistically rigorous results about which
version performs better in some way.

▶ Example use: for websites with a very large user-base
(e.g. Facebook). A change in interface might be tested using
A/B testing to see if it is an improvement in some way over
the existing interface.

54 / 54


