
Reviews Static analysis

CITS5501 Software Testing and Quality Assurance
Software reviews

Unit coordinator: Arran Stewart

1 / 34

Reviews Static analysis

Outline

▶ Reviews
▶ Other static techniques
▶ Static analysis
▶ Code metrics

2 / 34

Reviews Static analysis

Reviews

3 / 34

Reviews Static analysis

Software reviews

▶ We use review as a catch-all term for manually conducted
assessments that can be applied to any static software artifact
– from requirements or specification documents, to source code,
to use case descriptions, to test plans.

▶ If the review is not manual, but automated, we usually instead
call that static analysis.

▶ Both these techniques are usually distinguished from testing
▶ Testing involves actually running software, in order to observe

its properties
▶ It’s therefore a form of dynamic analysis.

4 / 34

Reviews Static analysis

Types of reviews

Reviews vary in the amount of preparation, formality, and rigour
applied to them.

▶ Code review on its own usually means a review by one other
person – varying in the level of formality, and in whether a
specified checklist/criteria are used

▶ Code walkthroughs are done synchronously by the developer
and at least one reviewer;
▶ Usually informal
▶ The developer leads the review team through their code and the

reviewers try to identify faults
▶ Code inspections are fairly formal – they are a detailed,

step-by-step group review of a work product, with each step
checked against predetermined criteria. They require
preparation and follow-up.

5 / 34

Reviews Static analysis

Types of reviews, cont’d

▶ Audits are usually performed by an independent party, not the
development team
▶ This could be a QA or testing department, or could be an

outside agency.
▶ Although it can result in defects being identified, the main focus

of an audit is on whether the system conforms to some
standard.

6 / 34

Reviews Static analysis

Why do reviews?

▶ Because they’re very effective, and much cheaper than finding
defects via testing.

7 / 34

Reviews Static analysis

Comparative cost of reviews

▶ From one study:1 correcting defects found by testing was 14.5
times the cost to find the problem in an inspection
▶ This grew to 68 times the inspection cost if the defect was

reported by a customer.
▶ From a study based on work at IBM: correcting defects found

in a released product was 45 times the cost if the defect was
fixed at design time.

1The figures cited here are from Jorgensen (2013), citing earlier work by Karl
Weigers.

8 / 34

Reviews Static analysis

Effectiveness of reviews

The following table shows the percentage of defects found by
several different detection techniques.2

Technique Modal Rate
Informal code reviews 25.00%
Regression test 25.00%
Unit test 30.00%
New function (component) test 30.00%
Informal design reviews 35.00%
Integration test 35.00%
Low-volume beta test (<10 sites) 35.00%
Personal desk-checking of code 40.00%
System test 40.00%
Formal design inspections 55.00%
Formal code inspections 60.00%
Modeling or prototyping 65.00%
High-volume beta test (>1,000 sites) 75.00%

2From McConnell (2004), ch 20, table 20-2, citing earlier work by Capers
Jones and Shull et al.

9 / 34

Reviews Static analysis

Effectiveness of reviews

▶ Informal reviews, unit and regression tests have a fairly low rate
of detection (≤ 35%)

▶ High-volume beta testing has a high rate of detection (around
75%) – but unfortunately, it occurs at the very end of the
software development lifecycle, when defects are most costly to
remove.

▶ Formal inspections of design or code have a detection rate of
55–60%.

10 / 34

Reviews Static analysis

Effectiveness of reviews

▶ Although many of these techniques have only a low rate of
detection in isolation, McConnell (2004) points to research
suggesting that using a wide variety of techniques in
combination can result in detection rates of 95%.

▶ Many organizations today rely on only testing and informal
code reviews – many defects are therefore being missed at early
stages of development, and only corrected at late stages or
after release (when the cost of doing so is much higher)

11 / 34

Reviews Static analysis

Benefits of reviews

Besides the fact that they can help detect defects, reviews have
other benefits:

▶ Communication and knowledge transfer: reviews ensure that
knowledge about code and design are shared amongst multiple
members of a team

▶ Training: having code reviewed can be a useful part of training
for new personnel

▶ Skill improvement: reviewees can benefit from others’
suggestions; reviewers can benefit from techniques or
approaches they may not have seen before.

12 / 34

Reviews Static analysis

Comparison of different review techniques

In ascending level of formality/preparation required:

▶ Code review
▶ Code walkthrough
▶ Code inspection

13 / 34

Reviews Static analysis

Code reviews

▶ Popular in many organizations
▶ Fairly cheap to do – just get another developer to look at code

before it is merged into version control
▶ But if done without rigour, is also the least effective form of

review
▶ Reviewers may have a checklist of things to look for.

14 / 34

Reviews Static analysis

Checklists

▶ A set of questions to stimulate critical appraisal of all aspects
of the system

▶ Questions are usually general in nature and thus applicable to
many types of system
▶ But an organization may also have checklists/best practices that

should be applied to a particular language or type of system

15 / 34

Reviews Static analysis

Code inspection

▶ Sometimes called a “Fagan inspection”; the term “code
inspection” was introduced by Michael E Fagan.

▶ More formal version of a code walk-through

▶ Procedure:
1. Overview
2. Preparation
3. Inspection
4. Rework
5. Follow up

▶ Meetings are chaired by a team moderator rather than the
programmer

16 / 34

Reviews Static analysis

Review best practices

For an exhaustive discussion of best practices, the book by Cohen et al
Best Kept Secrets of Peer Code Review is a good guide.

But we outline several best practices here.

Don’t waste reviewers’ time
▶ Don’t waste reviewers’ time doing things that could have been done

by the original developer or automated software
▶ Original developer should have already ensured their code meets

organizational standards, has been formatted for readability –
reviewers shouldn’t be doing the developers’ job for them

▶ It’s a waste of time for reveiwers to detect bugs or code formatting
issues that could’ve been picked up automatically – code
beautifiers/formatters and linters/static analyses should already
have been run over the code

17 / 34

Reviews Static analysis

Review best practices

Do provide reviewer instructions and/or checklists
▶ Empirical research suggests3 that reviews are more effective when

reviewers are provided with checklists or other guides to what sort
of problems they should be looking for or how the new code will be
used.

▶ A checklist might feature such problems as e.g. code not organised
logically, insufficient documentation, lack of tests, poor readability
of code, repetitive code

Do ensure review requests include context
▶ Requests for review should clearly explain to the reviewer what has

changed in the code, for what reason (e.g. provide a link to the
relevant bug reports), and whether the new code poses increased
risks.

3See e.g. Dunsmore et al (2000), cited in Cohen et al (2013).
18 / 34

Reviews Static analysis

Review best practices, cont’d

Do capture issues that can’t be corrected immediately
▶ Reviewers may pick up issues or make suggestions that can’t be

fixed/implemented for the current release – but they should be
captured for future use.

▶ (An easy way to do this is to add them to the organization’s
issue-tracking system.)

Do document the results of reviews
▶ All comments made, defects identified, etc should be recorded
▶ For instance via email (acceptable but not ideal for searching) or in

an issue tracking system (much more useful)
▶ If it turns out reviewers are consistently identifying the same sorts

of problems – can those problems be detected automatically?

19 / 34

Reviews Static analysis

Example – getNumOfDays

In labs, you will do code reviews of your own, for instance of a
getNumOfDays() method (to calculate number of days in a given month of
a given year).

if (year<1) {

throw new YearOutOfBounds(year);

}

if (month==1 || month==3 || month==5 || month=7 || month==10

|| month==12) {

numDays = 32;

} else if (month==4 || month==6 || month==9 || month==11) {

numDays = 30;

} else if (month==2) {

if (isLeapYear(year)) { numDays = 29;

}

// ...

20 / 34

Reviews Static analysis

Other static QA techniques

▶ Static analysis of code
▶ Analysis of code metrics

21 / 34

Reviews Static analysis

Static analysis

22 / 34

Reviews Static analysis

Static analysis

▶ Static analysis means the automated analysis of static
software artifacts, in order to detect defects or identify other
properties of the system.
▶ e.g. “This program P never dereferences a null pointer”

▶ It runs the gamut from very very simple techniques
(e.g. grepping code for functions that are known to be unsafe
or prone to misuse), to very complex.

23 / 34

Reviews Static analysis

Targets of static analysis

Many static analysis programs operate on the source code for a
program, but some instead analyse compiled binaries.

For example, the Ghidra framework can be used to analyse binary
executables.

24 / 34

https://github.com/NationalSecurityAgency/ghidra

Reviews Static analysis

Dynamic analysis

We contrast static analysis, which operates on static artifacts, with
dynamic analysis, which runs actual (usually instrumented) code.

▶ Identifying branch coverage of tests is a dynamic analysis
technique

▶ Other dynamic techniques include code sanitizers, which detect
memory, concurrency and other issues at runtime.

▶ Advantages:
▶ often more precise than static analysis

▶ Disadvantages:
▶ need to ensure code where defects are located is actually run;

whereas static analysis can have “perfect coverage” (since the
whole of the source code is available)

▶ may require code to be instrumented, and therefore recompiled
▶ normally slower than static analysis, since code has to actually

be run.
25 / 34

https://github.com/google/sanitizers

Reviews Static analysis

Static analysis limitations

We said that static analysis tools analyse source code to determine
whether the program has some property P

▶ e.g. “Never results in a ClassCastException”

It is impossible to write a tool which detects any non-trivial property
of a program perfectly (no false positives, no false negatives) – this
is Rice’s Theorem.

Therefore, all tools in practice are imperfect in some way.

They approximate the behaviour of the program: they provide either
false positives or false negatives.

26 / 34

https://en.wikipedia.org/wiki/Rice%27s_theorem

Reviews Static analysis

Terminology

False positive Reporting a program has some property when it does
not

False negative Reporting a program does not have some property
when it does

27 / 34

Reviews Static analysis

Static analysis limitations

If our focus is on identifying problematic properties, we will consider

▶ false positives to be cases where a problem is detected (but
actually cannot occur)

▶ false negatives to be cases where a problem will occur, but is
not detected.

Normally, we’d prefer to err on the side of having false positives.

28 / 34

Reviews Static analysis

Types of static analysis program

Compilers
Amongst other things, aim to detect violations of type
safety rules

Style checkers/linters
Check conformance with style rules

Bug finders
Look for known bugs, and/or code practices that are
known to be unsafe

Verifiers
Prove the absence of runtime errors of various sorts

29 / 34

Reviews Static analysis

Style checkers

Style checking covers good practice for a language

Usually covers

▶ coding standards (layout, bracketing)
▶ naming conventions (e.g. snake_case, camelCase,

SCREAMING_SNAKE_CASE)
▶ checking for dubious code constructs (e.g. in Python, use of

eval())
▶ it therefore has some overlap with bug finders

Example tools:

▶ clang-format, clang-tidy (C and C++)
▶ pylint, black (Python)
▶ checkstyle
▶ ShellCheck (Bash)

30 / 34

Reviews Static analysis

Bug finders

Focus is on detecting code constructs known to be problematic.

Java examples:

▶ FindBugs
▶ PMD

PMD has many capabilities, and can be augmented with custom
rules.

31 / 34

Reviews Static analysis

Bug finders

Coverity

▶ Looks for bugs in C, C++, Java and C# code
▶ Used by many companies, including NASA JPL
▶ Free, cloud-based version available for open-source projects

32 / 34

http://www.coverity.com/

Reviews Static analysis

Code Metrics

▶ Measures of properties of code
▶ Usually fairly “low level” properties, when compared with static

analysis
▶ But the boundary is blurry

▶ Examples:
▶ graph theoretic complexity (of the program’s control graph)
▶ module accessibility (how many ways a module may be

accessed)
▶ number of entry and exit points per module
▶ for some other object oriented metrics see

http://yunus.hun.edu.tr/~sencer/oom.html
▶ Some of these metrics may correlate with the quality of the

code, or how likely it is to contain errors

33 / 34

http://yunus.hun.edu.tr/~sencer/oom.html

Reviews Static analysis

References

▶ Cohen, J., Brown, E., DuRette, B., & Teleki, S. Best Kept
Secrets of Peer Code Review. Austin, Tex.: Smart Bear, 2013.

▶ Dunsmore, A., Roper, M., & Wood, M. “Object-Oriented
Inspection in the Face of Delocalisation.” In Proceedings of the
22nd International Conference on Software Engineering (ICSE
’00), 467–476. Limerick, Ireland: ACM Press, 2000. Available
at https://doi.org/10.1145/337180.337343.

▶ Jorgensen, Paul C. Software Testing: A Craftsman’s Approach.
4th edition. Boca Raton, Florida: Auerbach Publications, 2013.

▶ McConnell, Steve. Code Complete. 2nd edition. Redmond,
Washington: Microsoft Press, 2004.

34 / 34

https://doi.org/10.1145/337180.337343

