
Motivation Theory Coverage Criteria In Practice

CITS5501 Software Testing and Quality
Assurance

Syntax-based testing:
Program-Based Mutation Testing

Arran Stewart and Rachel Cardell-Oliver

1 / 30

Motivation Theory Coverage Criteria In Practice

Previous Lecture

I Motivation - What is syntax-based testing?

I Theory - Formal Grammars and Coverage Criteria

I Applications of Syntax-based testing

I Input-Space Mutation Testing

I Program-Based Mutation Testing (this lecture)

2 / 30

Motivation Theory Coverage Criteria In Practice

Overview

I Motivation - What is Program-Based Mutation testing?

I Theory and Definitions

I In Practice - Worked Example and Tools

Reading: Ammann and Offutt. Introduction to Software Testing,
2016. Ch 9 Syntax-Based Testing

Also see this great introduction: pitest.org

3 / 30

https://pitest.org/

Motivation Theory Coverage Criteria In Practice

Motivation

4 / 30

Motivation Theory Coverage Criteria In Practice

Program-Based Mutation testing Motivation: Are we
missing any tests?

Some useful techniques for working out if there are gaps in our tests
are:

I graph coverage techniques -|- may show us that there are
portions of code that have never been tested

I logic coverage techniques -|- may show us we haven’t tested
different sub-parts of conditions

I program-based mutation testing can be used to “test the
tests” -|- if we mutate a program, and it still passes all our
tests, something is wrong

In this lecture we will explore program-based mutation testing.

5 / 30

Motivation Theory Coverage Criteria In Practice

Program-Based Mutation Testing in a nutshell

I Mutation testing is conceptually quite simple.

I Faults (or mutations) are automatically seeded into your code,
then your tests are run. If your tests fail then the mutation is
killed, if your tests pass then the mutation lived.

I The quality of your tests can be gauged from the percentage of
mutations killed.

I Source: see this great introduction: pitest.org

6 / 30

https://pitest.org/

Motivation Theory Coverage Criteria In Practice

Program-Based Mutation Testing

Program-Based Mutation testing (also called “mutation
analysis”) is a technique for evaluating the quality of a suite of
software tests

I Suppose we have some program under a test, and a suite of
tests designed to identify defects in it.

I Mutation testing works by modifying the program under
test in small ways (e.g. flipping a less-than sign to a
greater-than; changing a hard-coded number from 0 to 1).

7 / 30

Motivation Theory Coverage Criteria In Practice

Program-Based Mutation testing (cont)

I Mutations are usually designed to mimic typically programming
errors, such as typographical errors, wrong choice of operator,
or off-by-one errors

I If one of our tests behaves differently for the mutant (vs on
the original program), we say that test kills the mutant

I If the test suite doesn’t detect and reject the mutated code, we
consider the test suite is defective, and we need to consider
more/different test cases.

8 / 30

Motivation Theory Coverage Criteria In Practice

Mutation example

I A sample method to test (in a Java-like language):
int mult(int a, int b) { return a * b; }

I A possible test:
assertEquals(1, mult(1,1));

I Is this a useful test?

9 / 30

Motivation Theory Coverage Criteria In Practice

Mutation example (2)

I ans.: No, it’s terrible.
I Consider the following mutation of the original code:

int mult(int a, int b) { return a * b; }

⇒ int mult(int a, int b) { return a ** b; }

(where ** is a “power” operator)
I 1*1 == 1**1 so our test will still pass -

I so it’s a pretty poor test because it does not ‘’kill” the mutant
I A good quality suite of tests should be able to catch these

types of errors

10 / 30

Motivation Theory Coverage Criteria In Practice

Theory

11 / 30

Motivation Theory Coverage Criteria In Practice

Mutation testing is a syntax-based test method

Mutatation testing is a form of syntax-based testing

Mutations (changes) to the program under test can be defined by a
grammar

12 / 30

Motivation Theory Coverage Criteria In Practice

Mutation testing – terminology

I Ground string: A string in the grammar
I (The term “ground” basically means “not having any variables”

– in this context, not having any non-terminals)

I Mutation operator: A rule that specifies syntactic variations
of strings generated from a grammar - (e.g. “If the string has a
less-than symbol in it, flip that intro a greater-than symbol”)

I Mutant: The result of one application of a mutation operator
on the ground string

I A mutant is a string

13 / 30

Motivation Theory Coverage Criteria In Practice

Killing Mutants

I An example of a ground string is – our program under test.
I . . . since it’s a string in the grammar of “syntactically valid

Java programs”
I We apply our mutation operator to the ground strings to

generate mutants, new valid strings
I Killing mutants: If we have some mutant generated from the

original ground string, and we look at one or several of our
tests, we can ask: do they “kill” the mutant?
I i.e. Does the test(s) give a different result for the mutant,

compared to the original?
I If it does, it’s said to “kill” the mutant.

14 / 30

Motivation Theory Coverage Criteria In Practice

Coverage Criteria

15 / 30

Motivation Theory Coverage Criteria In Practice

Syntax-based coverage criteria – mutant coverage

I We can define a coverage criterion in terms of killing mutants:

Mutation Coverage (MC) For each mutant m, the test
requirements contain exactly one requirement to kill
m.

I Coverage in mutation equates to number of mutants killed

I The number of mutants killed is called the mutation score

16 / 30

Motivation Theory Coverage Criteria In Practice

Coverage criteria – creating invalid strings

I When creating mutants (i.e. invalid strings), two simple criteria:
I use every operator once or
I use every production once

I TR is test requirements. TR are descriptions of test cases
that will be refined into executable tests

Mutation Production Coverage (MPC) For each mutation
operator, TR contains several requirements, to create
one mutated string m that includes every production
that can be mutated by that operator

Mutation Operator Coverage (MOC) For each mutation
operator, TR contains exactly one requirement, to
create a mutated string m that is derived using the
mutation operator

17 / 30

Motivation Theory Coverage Criteria In Practice

Coverage criteria – practical concerns

I The number of test requirements for mutation is somewhat
difficult to quantify because it depends on the syntax of the
artifact as well as the mutation operators

I In most situations, mutation yields more test requirements
than any other coverage criterion

18 / 30

Motivation Theory Coverage Criteria In Practice

In Practice

19 / 30

Motivation Theory Coverage Criteria In Practice

Frameworks for mutation testing

Mutation testing is difficult to apply by hand and automation is
more complicated than for most other criteria.

As a result, mutation is widely considered a high-end coverage
criterion, more effective than most but also more expensive.

One common use of mutation is as a sort of gold standard in
experimental studies for comparative evaluation of other test
criteria.

Some example mutation testing frameworks are:

I PIT, for Java (originally stood for “Parallel Isolated Test”)
I Mutpy, for Python
I Stryker, for C#
I Mutagen, for Rust (motto: “Breaking your Rust code for fun &

profit”)
20 / 30

https://pitest.org/
https://github.com/mutpy/mutpy
https://stryker-mutator.io/
https://github.com/llogiq/mutagen

Motivation Theory Coverage Criteria In Practice

Advantages and disadvantages

Advantages and disadvantages of mutation testing:

I Identifies
weak/ineffective tests

I Very effective at
finding problems

I Helps quantify how
useful your tests are

I Can be time-consuming
(large number of mutants to
generate, whole test suite
needs to be run many times)

I Results require some
familiarity with mutation
testing to be properly
understood.

21 / 30

Motivation Theory Coverage Criteria In Practice

Mutation testing example1 – IOT cat door

Suppose we have an Internet of Things (IoT)–enabled cat door.
The final cat door will be implemented as hardware with embedded
software; but we can still check our logic using testing techniques
we have seen before.

We have the following user story describing the purpose of the cat
door:

Using my home automation system (HAS),
I want to control when the cat can go outside,
because I want to keep the cat safe overnight.

1Adapted from Alex Bunardzic, “Mutation testing by example: Failure as
experimentation” (2019)

22 / 30

https://opensource.com/article/19/9/mutation-testing-example-failure-experimentation
https://opensource.com/article/19/9/mutation-testing-example-failure-experimentation

Motivation Theory Coverage Criteria In Practice

Cat door interface

We represent the cat door using the following interface:
public interface ICatDoor {

/** When "day" is supplied, unlock the door;

* when "night" is supplied, lock the door */

public void control(String dayOrNight);

/** Returns either "locked" or "unlocked" */

public String getStatus();

}

23 / 30

Motivation Theory Coverage Criteria In Practice

Testing scenario

We want to write tests revolving around the following scenario:

Scenario #1: Disable cat trap door during nighttime
Given that the day/night detector detects that it is nighttime
When the day/night detector notifies the HAS
Then HAS disables the IoT-capable cat door

(We won’t worry about how the day/night detector is implemented.
Perhaps it uses ambient light levels; perhaps it consults a database
of sunrise/sunset times for its current geographical location.)

24 / 30

Motivation Theory Coverage Criteria In Practice

Cat door code under test

public class CatDoor implements ICatDoor {

// ...

public void control(String dayOrNight) {

if (dayOrNight.equals("night")) {

this.lock();

} else {

this.unlock();

}

}

}

25 / 30

Motivation Theory Coverage Criteria In Practice

Cat door test code

public class TestGivenNighttimeDoorLocked {

@Test

public void test() {

ICatDoor door = new CatDoor();

door.control("night");

String expected = "locked";

String actual = door.getStatus();

assertEquals(expected, actual, "status should be locked");

}

}

26 / 30

Motivation Theory Coverage Criteria In Practice

start PIT running

27:46 am PIT >> INFO : Completed in 2 seconds

==

− Mutators

==

> org.pitest.mutationtest.engine.gregor.mutators.rv.ROR3Mutator

>> Generated 1 Killed 1 (100%)

> KILLED 1 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

> MEMORY_ERROR 0 NOT_STARTED 0 STARTED 0 RUN_ERROR 0

> NO_COVERAGE 0

−−
> org.pitest.mutationtest.engine.gregor.mutators.VoidMethodCallMutator

>> Generated 2 Killed 2 (100%)

> KILLED 2 SURVIVED 0 TIMED_OUT 0 NON_VIABLE 0

<more output snipped>

27 / 30

Motivation Theory Coverage Criteria In Practice

PIT output

28 / 30

Motivation Theory Coverage Criteria In Practice

PIT output

29 / 30

Motivation Theory Coverage Criteria In Practice

Summary

I Motivation - What is Program-Based Mutation testing?

I Theory Definitions

I Coverage Criteria

I In Practice - Worked Example and Tools

30 / 30

	Motivation
	Theory
	Coverage Criteria
	In Practice

