
CITS5501 Software Testing and Quality Assurance
Formal methods – introduction

Unit coordinator: Arran Stewart

1 / 28

Overview

▶ What are formal methods?
▶ Why use them?
▶ How does formal verification work?
▶ What sorts of formal methods exist?

2 / 28

Sources

Some useful sources, for more information:

▶ Pressman, R., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 2005

▶ Huth and Ryan, Logic in Computer Science
▶ Pierce et al, Software Foundations vol 1

3 / 28

https://softwarefoundations.cis.upenn.edu/lf-current/Preface.html

Overview

▶ Formal methods are maths-based techniques for describing
system properties

▶ When doing software engineering – specifying and developing
software systems – the activities done can be done with varying
levels of mathematical rigor.

▶ Things towards the “more formal” side of this spectrum will
tend to get called “lightweight formal methods” or “formal
methods”.

▶ Once a technique is very widely accepted and used, people tend
to stop thinking of it as a “formal method”, and just call it
“programming” or “specification”.

4 / 28

Overview

▶ Why use formal methods?
▶ Building reliable software is hard.

▶ Software systems can be hugely complex, and knowing exactly
what a system is doing at any point of time is likewise hard.

▶ So computer scientists and software engineers have come up
with all sorts of techniques for improving reliability (many of
which we’ve seen) – testing, risk management, quality controls,
maths-based techniques for reasoning about the properties of
software

5 / 28

Overview

▶ By reasoning about the properties of software – i.e., proving
things about it – we can get certainty that our programs are
reliable and error-free

▶ Testing is empirical – we go out and check whether we can
find something (bugs, in this case)
▶ But if we don’t find a bug, that doesn’t mean that no bugs exist

– we may not have looked hard enough or in the right places.
▶ Formal methods are based on mathematical deduction.

6 / 28

Example

We could write a requirement

▶ informally, just using natural language, and perhaps tables and
diagrams.
▶ easy, but can be imprecise and ambiguous (and hard to spot

when that has occurred)
▶ semi-formally, perhaps using occasional mathematical formulas

or bits of pseudocode to express what’s required
▶ mostly using mathematical notation, with a bit of English to

clarify what the notation represents.
▶ much more work, and harder to ensure the notation matches

our intuitive idea of what the system should do
▶ little or no vagueness or ambiguity

7 / 28

Example

If we wanted to specify

▶ exact commands and parameters accepted by a program, or
▶ the format of an HTTP request

we could do so in natural language. But this is very verbose, and
often imprecise.

Or we could use a specification language we’ve already seen – BNF
(or EBNF: extended BNF).

8 / 28

Example – HTTP

A version of EBNF is, in fact, what is used to define the format of
HTTP requests, in RFC2616.

Example (source: RFC 2616)

DIGIT = "0".."9"

HEX = "A" | "B" | "C" | "D" | "E" | "F"

| "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

HTTP−Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

9 / 28

https://www.ietf.org/rfc/rfc2616.txt

Example

The advantages of BNF (over natural language) are that it is

▶ concise – much shorter than an equivalent natural language
description would be

▶ precise and unambiguous – states exactly what is and isn’t in
the language being described

▶ capable of being processed and used programmatically – a
computer can take your BNF and use it to create a parser or
generator

10 / 28

Why use formal methods – problems in specifying systems

System specifications can suffer from a few potential problems.

▶ Contradictions. In a very large set of specifications, it can be
difficult to tell whether there are requirements that contradict
each other.
▶ Can arise where e.g. specifications are obtained from multiple

users/stakeholders
▶ Example: one requirement says “all temperatures” in a chemical

reactor must be monitored, another (obtained from another
member of staff) says only temperatures in a specific range.

11 / 28

Problems in specifying systems

▶ Ambiguities. i.e., statements which can be interpreted in
multiple different ways.
“The operator identity consists of the operator name and
password; the password consists of six digits. It should be
displayed on the security screen and deposited in the login file
when an operator logs into the system.”

▶ . . . Does “it” refer to the identity, or the password?
▶ “Should” can be ambiguous – does “The system should do X”

mean the system must do X, or that it is optional but desirable
that the system do X?

▶ Many terms have both technical and non-technical meanings
(possibly multiple of each): for instance, “reliable”, “robust”,
“composable”, “category”, “failure”, “orthogonal”, “back end”,
“kernel”, “platform”, “entropy” . . .

12 / 28

Problems in specifying systems

▶ Ambiguities. i.e., statements which can be interpreted in
multiple different ways.
“The operator identity consists of the operator name and
password; the password consists of six digits. It should be
displayed on the security screen and deposited in the login file
when an operator logs into the system.”

▶ . . . Does “it” refer to the identity, or the password?

▶ “Should” can be ambiguous – does “The system should do X”
mean the system must do X, or that it is optional but desirable
that the system do X?

▶ Many terms have both technical and non-technical meanings
(possibly multiple of each): for instance, “reliable”, “robust”,
“composable”, “category”, “failure”, “orthogonal”, “back end”,
“kernel”, “platform”, “entropy” . . .

12 / 28

Problems in specifying systems

▶ Ambiguities. i.e., statements which can be interpreted in
multiple different ways.
“The operator identity consists of the operator name and
password; the password consists of six digits. It should be
displayed on the security screen and deposited in the login file
when an operator logs into the system.”

▶ . . . Does “it” refer to the identity, or the password?
▶ “Should” can be ambiguous – does “The system should do X”

mean the system must do X, or that it is optional but desirable
that the system do X?

▶ Many terms have both technical and non-technical meanings
(possibly multiple of each): for instance, “reliable”, “robust”,
“composable”, “category”, “failure”, “orthogonal”, “back end”,
“kernel”, “platform”, “entropy” . . .

12 / 28

Problems in specifying systems

▶ Ambiguities. i.e., statements which can be interpreted in
multiple different ways.
“The operator identity consists of the operator name and
password; the password consists of six digits. It should be
displayed on the security screen and deposited in the login file
when an operator logs into the system.”

▶ . . . Does “it” refer to the identity, or the password?
▶ “Should” can be ambiguous – does “The system should do X”

mean the system must do X, or that it is optional but desirable
that the system do X?

▶ Many terms have both technical and non-technical meanings
(possibly multiple of each): for instance, “reliable”, “robust”,
“composable”, “category”, “failure”, “orthogonal”, “back end”,
“kernel”, “platform”, “entropy” . . .

12 / 28

Problems in specifying systems

▶ Vagueness. Vagueness occurs when it’s unclear what a concept
covers, or which things belong to a category and which don’t.

▶ “is tall” is vague: some people are definitely tall, and some are
definitely short, but it can be difficult to tell when exactly
someone meets the criterion of being tall.

▶ Likewise “fast”, “performant”, “efficiently”, “scalable”,
“flexible”, “is user-friendly”, “should be secure”,
“straightforward to understand” are all vague.

13 / 28

Problems in specifying systems

▶ Vagueness. Vagueness occurs when it’s unclear what a concept
covers, or which things belong to a category and which don’t.

▶ “is tall” is vague: some people are definitely tall, and some are
definitely short, but it can be difficult to tell when exactly
someone meets the criterion of being tall.

▶ Likewise “fast”, “performant”, “efficiently”, “scalable”,
“flexible”, “is user-friendly”, “should be secure”,
“straightforward to understand” are all vague.

13 / 28

Problems in specifying systems

▶ Vagueness. Vagueness occurs when it’s unclear what a concept
covers, or which things belong to a category and which don’t.

▶ “is tall” is vague: some people are definitely tall, and some are
definitely short, but it can be difficult to tell when exactly
someone meets the criterion of being tall.

▶ Likewise “fast”, “performant”, “efficiently”, “scalable”,
“flexible”, “is user-friendly”, “should be secure”,
“straightforward to understand” are all vague.

13 / 28

Problems in specifying systems

▶ Incompleteness. This covers specifications that, for instance,
fail to specify what should happen in some case.

▶ e.g. An obviously incomplete requirement: “A user may specify
normal or emergency mode when requesting a system
shutdown. In normal mode, pending operations shall be logged
and the system shut down within 2 minutes.”

▶ . . . So what happens in emergency mode?
▶ But other cases of incompleteness may be harder to spot.

14 / 28

Problems in specifying systems

▶ Incompleteness. This covers specifications that, for instance,
fail to specify what should happen in some case.

▶ e.g. An obviously incomplete requirement: “A user may specify
normal or emergency mode when requesting a system
shutdown. In normal mode, pending operations shall be logged
and the system shut down within 2 minutes.”

▶ . . . So what happens in emergency mode?
▶ But other cases of incompleteness may be harder to spot.

14 / 28

Problems in specifying systems

▶ Incompleteness. This covers specifications that, for instance,
fail to specify what should happen in some case.

▶ e.g. An obviously incomplete requirement: “A user may specify
normal or emergency mode when requesting a system
shutdown. In normal mode, pending operations shall be logged
and the system shut down within 2 minutes.”

▶ . . . So what happens in emergency mode?

▶ But other cases of incompleteness may be harder to spot.

14 / 28

Problems in specifying systems

▶ Incompleteness. This covers specifications that, for instance,
fail to specify what should happen in some case.

▶ e.g. An obviously incomplete requirement: “A user may specify
normal or emergency mode when requesting a system
shutdown. In normal mode, pending operations shall be logged
and the system shut down within 2 minutes.”

▶ . . . So what happens in emergency mode?
▶ But other cases of incompleteness may be harder to spot.

14 / 28

Problems in specifying systems

▶ In addition to these, there are many other ways requirements
can be written poorly –
e.g. Overly long and complex sentences, mixed levels of
abstraction (mixing high-level, abstract statements with very
low-level ones → difficult to distinguish high-level architecture
from low-level details), undefined jargon terms, specifying
implementation rather than requirements (how vs what),
over-specifying, don’t satisfy business needs, etc.

▶ Formal specifications can potentially help avoid ambiguity,
vagueness, contradiction and some gaps in completeness.

▶ Other problems, not so much. Just as it’s possible to write
programs badly in any language, it’s also possible to write
formal specifications badly.
There is still a need for review of specifications, as with any
artifact.

15 / 28

Problems in specifying systems

▶ In addition to these, there are many other ways requirements
can be written poorly –
e.g. Overly long and complex sentences, mixed levels of
abstraction (mixing high-level, abstract statements with very
low-level ones → difficult to distinguish high-level architecture
from low-level details), undefined jargon terms, specifying
implementation rather than requirements (how vs what),
over-specifying, don’t satisfy business needs, etc.

▶ Formal specifications can potentially help avoid ambiguity,
vagueness, contradiction and some gaps in completeness.

▶ Other problems, not so much. Just as it’s possible to write
programs badly in any language, it’s also possible to write
formal specifications badly.
There is still a need for review of specifications, as with any
artifact.

15 / 28

Problems in specifying systems

▶ In addition to these, there are many other ways requirements
can be written poorly –
e.g. Overly long and complex sentences, mixed levels of
abstraction (mixing high-level, abstract statements with very
low-level ones → difficult to distinguish high-level architecture
from low-level details), undefined jargon terms, specifying
implementation rather than requirements (how vs what),
over-specifying, don’t satisfy business needs, etc.

▶ Formal specifications can potentially help avoid ambiguity,
vagueness, contradiction and some gaps in completeness.

▶ Other problems, not so much. Just as it’s possible to write
programs badly in any language, it’s also possible to write
formal specifications badly.
There is still a need for review of specifications, as with any
artifact.

15 / 28

Formal specifications

▶ Formal specifications can help with ameliorating these
problems.

▶ Sometimes, just the process of attempting to formalize a
requirement can reveal problems with it.

▶ Using a formal model can help reveal ambiguity and vagueness
and allow them to be eliminated

▶ It may also be possible (depending on the mathematical model
used) to detect inconsistencies

▶ Detecting whether a specification is complete is more difficult.
▶ Some gaps may be able to be detected
▶ But there are nearly always some details that are left undefined,

or scenarios that may not have been considered.

16 / 28

Formal specifications

Formal specifications

▶ Meaning is defined in terms of mathematics
▶ Many sorts of formal specification languages and tools with

different areas of application
▶ Small and specific specification languages:

▶ State charts – define states and transitions
▶ BNF – defines context-free languages.
▶ Regular expressions – define regular languages (a subset of

context-free languages)
[NB: in practice, most programming languages use “extended
regular expressions”, which can define much more]

▶ π-calculus – used to represent concurrent systems

17 / 28

https://en.wikipedia.org/wiki/%CE%A0-calculus

Formal specification languages

Some general-purpose specification languages:

▶ Z notation
▶ based on set theory and predicate logic
▶ developed in the 1970s.
▶ Now has an ISO standard, and variations (e.g. object-oriented

versions)
▶ TLA+:

▶ Stands for “Temporal Logic of Actions”
▶ Especially well-suited for writing specifications of concurrent

and distributed systems
▶ For finite state systems, can check (up to some number of

steps) that particular properties hold (e.g. safety, no deadlock)

18 / 28

Formal specification languages

▶ We’ll be using the Alloy specification language
▶ Alloy is both a language for describing structures, and a tool

(written in Java) for exploring and checking those structures.
▶ Influenced by Z notation, and modelling languages such as

UML (the Unified Modelling Language).
▶ Website: http://alloy.mit.edu/ (The Alloy Analyzer tool can be

downloaded from here.)

19 / 28

http://alloy.mit.edu/

Aspects of a formal method

Any formal method usually includes:

▶ A domain of application: a topic or class of things to which the
method can usefully be applied.
example: BNF is used to specify grammars (languages or document
formats).

▶ Some system property it can be used to specify or verify
example: What commands and arguments are accepted by a program.

These properties could be

▶ functional requirements
▶ non-functional requirements (complexity, aspects of security)
▶ protocols
▶ etc.

20 / 28

Aspects of a formal method

A formal specification method usually includes:

▶ syntax: Rules for how the specification is written, and what
constitutes a well-formed specification.

▶ semantics: How the specification is interpreted – what it
means.

▶ rules of inference: Techniques for deriving useful information
from the specification.

21 / 28

Categorizing formal methods

We can categorize formal methods in various ways . . .

Degree of formality how formal are the specifications and the
system description?

Degree of automation full automatic through to fully manual.
(Most computer-aided methods are somewhere in the
middle.)

Properties verified What is being verified about the system? Just
one property (e.g. does not deadlock) or many
(usually v expensive)

22 / 28

Categorizing formal methods, cont’d

Intended domain of application e.g. hardware vs software; reactive
systems (run in an endless loop) vs terminating;
sequential vs concurrent

Life-cycle stage Verification done early in development, vs later
(Earlier is obviously better – later is more expensive to
fix)

23 / 28

Life-cycle stage

▶ Sometimes the system comes first, then the verification
▶ Often true for programming languages . . .

▶ e.g. Java was released in 1995, and in 1997, a machine-checked
proof of “type soundness” of a subset of Java was proved.1

▶ But: later versions of Java (from 5 onwards) turned out to have
unsound type systems in various ways. Oops.

▶ The interaction of sub-typing and inheritance turned out to
make the early OO language Eiffel unsound. Also oops.2

1Syme. “Proving Java Type Soundness”. 1997 [pdf]
2William R. Cook. A proposal for making Eiffel type-safe. The Computer

Journal, 32(4):305–311, August 1989.
24 / 28

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/java.pdf

Example – type systems

▶ We often don’t think of type systems as being a “formal
method”, but some type systems are very expressive, and allow
us to prove quite strong results about our programs

▶ We can use them to prove that (for instance) unsanitized user
data never gets output to a web page

25 / 28

Example – type systems

A common poor coding practice is “stringly typed” programs –
programs representing information as string that could have been
represented using types (e.g. enumerations)

▶ Stringly-typed: encode flight types as “return” or “oneway”
▶ Better: use an enum: enum FlightType { RETURN, ONEWAY }

Programmers who avoid “stringly typing” often still represent
quantities as numbers when they represent completely incompatible
things – e.g. using a plain double for both velocity and body mass
index.

26 / 28

Example – type systems

A common poor coding practice is “stringly typed” programs –
programs representing information as string that could have been
represented using types (e.g. enumerations)

▶ Stringly-typed: encode flight types as “return” or “oneway”
▶ Better: use an enum: enum FlightType { RETURN, ONEWAY }

Programmers who avoid “stringly typing” often still represent
quantities as numbers when they represent completely incompatible
things – e.g. using a plain double for both velocity and body mass
index.

26 / 28

Type systems

▶ A type system many of us will have used in high school: consistency
of SI units

▶ We can multiply and divide things which have different units
(e.g. distance divided by time, or acceleration multiplied by time) . . .
. . . but it makes no physical sense to add things with different units
– we can’t add seconds to metres – and the rules for consistency of SI
units stop us from doing so, thus avoiding silly mistakes.

▶ In most programming languages: floating point numbers are used for
all physical quantities – nothing to stop you adding a number
representing seconds to one representing distance.

▶ Some languages (e.g. Fortress, F#) have dimensionality and unit
checking built into the language –
useful if coding something with a lot of physical quantities and want
checks you haven’t performed a physically nonsensical calculation.

27 / 28

https://github.com/stokito/fortress-lang
https://fsharp.org/

Type systems

Other languages without a full unit system will still let you
encapsulate numbers in some more specific type, that can’t be freely
added to normal numbers.

e.g. in Haskell

newtype Velocity = Velocity Double

deriving (Read, Show, Num, Eq, Ord)

28 / 28

