
CITS5501 Software Testing and Quality Assurance
Program verification

Unit coordinator: Arran Stewart

1 / 41

Overview

▶ Why verify programs?
▶ How can we verify programs using Dafny?

2 / 41

Program verification

Program verification (also called “formal verification”) is the
process of proving that a program satisfies a formal specification of
its behaviour.

3 / 41

Motivation

Why formally verify a program?

Because you want to be absolutely sure it meets (some or all of) its
specifications.

4 / 41

Motivation

Why formally verify a program?

Because you want to be absolutely sure it meets (some or all of) its
specifications.

4 / 41

Limitations

Why not formally verify all programs?

▶ It does take extra time, effort and expertise
▶ Though as we will see, languages like Dafny make formal

verification much easier than it once was
▶ It doesn’t guarantee that our specifications were sensible ones
▶ Appropriate tools might not be available for the language

you’re working in

5 / 41

How does verification work?

▶ Proofs of correctness use techniques from formal logic to prove
that if the starting state (i.e., “input” variables) of a program
satisfies particular properties, than the end state after
executing a program (i.e., “output” variables) satisfies some
other properties.
▶ The first lot of properties are called preconditions (assertions

that hold prior to execution of a piece of code) –
▶ The second lot are postconditions (assertions that hold after

execution)

6 / 41

Preconditions and postconditions review

▶ We’ve seen that in all languages, it’s good practice to
document the preconditions and postconditions of a method or
function.

▶ The preconditions and postconditions are like a contract
between the developer of the method, and the caller of the
method;
▶ If the preconditions are satisfied by the caller, then the method

promises that after execution, the postconditions will be true.
▶ But if the preconditions are not satisfied, the method doesn’t

promise anything at all.

7 / 41

Undefined behaviour example

▶ See for example the Java Arrays.binarySearch(arr, key),
methods which say “The array must be sorted . . . prior to
making this call. If it is not sorted, the results are undefined.”

▶ If the caller passes an unsorted array – the method implementer
can do anything they want.
▶ They can return a wrong answer; delete all the files on your hard

drive; launch intercontinental ballistic missiles at your house.

8 / 41

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-byte:A-byte-

Postconditions and exceptions

In Java, throwing exceptions is just another sort of postcondition.

e.g. a method which opens a file on disk may have the contract:

“If the file exists, and is readable, I will return a properly constructed
FileInputStream object.
If the named file does not exist, is a directory rather than a file, or
for some other reason cannot be opened for reading, I will throw a
FileNotFoundException.”

(See the constructor description for the class
java.io.FileInputStream.)

9 / 41

https://docs.oracle.com/javase/7/docs/api/java/io/FileInputStream.html#constructor_detail

Dafny

We’ll be using the Dafny programming language to explore program
verification.

It is somewhat similar in style to Java or C#, but includes built-in
features for program verification.

Once a program is verified in Dafny, it can be compile to C#, Java,
JavaScript or Go.

10 / 41

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Using Dafny online – Gitpod

You can also compile (as well as run) Dafny programs using Gitpod,
which provides you with an online development environment based
on Microsoft VS Code.

▶ Visit https://gitpod.io/#https://github.com/arranstewart-
dev/dafny-gitpod in your browser

▶ Gitpod will download a Docker image containing the Dafny
compiler, and create an online IDE environment
(This may take a couple of minutes)

▶ In the terminal shell, the “dafny” command will be on your
PATH.

11 / 41

https://www.gitpod.io/
https://code.visualstudio.com
https://gitpod.io/#https://github.com/arranstewart-dev/dafny-gitpod
https://gitpod.io/#https://github.com/arranstewart-dev/dafny-gitpod

Dafny in Gitpod

12 / 41

Dafny methods
To write and use a method Abs() which calculates the absolute
value of an integer, we would write code something like this:

method Abs(x: int) returns (y: int) {

if x < 0

{ return −x; }

else

{ return x; }

}

method Main() {

var x := Abs(−3);

print x, "\n";

}

13 / 41

Abs method

This method doesn’t (yet) include any preconditions or
postconditions.

method Abs(x: int) returns (y: int) {

if x < 0

{ return −x; }

else

{ return x; }

}

14 / 41

Dafny return values
One difference from Java is that the return value is given its own name,
“y”.

method Abs(x: int) returns (y: int) {

if x < 0

{ return −x; }

else

{ return x; }

}

Why is this? It’s because we can add postconditions to Dafny code, which
refer to the return value (or to input parameters, as well), so it’s
convenient to give it a name.

A common convention is that if the input parameter is called x, we call the
return value x'.

15 / 41

Dafny preconditions and postconditions
We can add preconditions (with “requires”) and postconditions (with
“ensures”) to a method – and Dafny won’t compile the method, unless we
can convince the compiler that if the preconditions are satisfied, then all
the postconditions follow.

method Abs(x: int) returns (y: int)

ensures y >= 0

{

if x < 0

{ return −x; }

else

{ return x; }

}

Dafny knows enough about arithmetic and negative numbers that it can
assure itself that y >=0 is always true.

16 / 41

Dafny preconditions and postconditions
We don’t have to include any preconditions or postconditions at all; but
being able to do so is the main point of using Dafny.

Dafny won’t let us call a method, unless we can prove we’ve satisfied the
preconditions for that method. If we can’t, we get a compile error.

// compiles ok

method Abs(x: int) returns (y: int)

ensures y >= 0

{

if x < 0 { return −x; } else {return x; }

}

method Main() {

var x := Abs(−3);

print x, "\n";

}

17 / 41

Dafny preconditions and postconditions

// won't compile

method Abs(x: int) returns (y: int)

requires x > 0

ensures y >= 0

{

if x < 0 { return −x; } else {return x; }

}

method Main() {

var x := Abs(−3);

print x, "\n";

}

18 / 41

Dafny preconditions and postconditions

19 / 41

Dafny postconditions

method Abs(x: int) returns (y: int)

ensures 0 <= y

{

...

}

▶ Multiple “ensures” specifications can be added
▶ “ensures” specifications can make use of the usual logical

connectives (e.g. “&&”, “||”)
▶ The suggested style is for distinct “properties” to be given their

own “ensures” specification
▶ A method with no “ensures” specifications has no

postconditions, so will always verify.

20 / 41

Dafny preconditions

Preconditions can be specified with keyword “requires”

method AddOne(x: int) returns (y: int)

requires x > 0

ensures y > 0

{

return x + 1;

}

21 / 41

Summary

▶ A programmer calling a method must ensure the preconditions
are met
(else Dafny reports a compile error)

▶ A programmer writing a method may assume the preconditions
are already true, but must ensure the postconditions are met
(else Dafny reports a compile error)

22 / 41

Dafny assertions

In addition to preconditions and postconditions, Dafny lets you write
assertions – these are found somewhere in the body of a method.

They assert that something is true at that point in the code (and if
Dafny can’t prove it is so, it will report an error).

23 / 41

Dafny assertions

method MyMethod()

{

assert 2 < 3;

}

Assertions don’t have to mention any of the variables or return
values of a method (though obviously they are going to be more
useful if they do).

24 / 41

Dafny assertions
You can think of assertions as a way of “asking” the Dafny verifier what it
knows to be true at any point in the program.

(A bit like println/printf, but for debugging compilation, rather than
execution.)

method Abs(x: int) returns (y: int)

ensures 0 <= y

{

if x < 0

{ return −x; }

else

{ return x; }

}

method MyMethod() {

var v := Abs(−3);

assert v >= 0;

}

25 / 41

Dafny verification errors

▶ There are two main reasons you might get a verification error:
▶ Firstly, there might be something actually incorrect with your

code.
▶ Secondly, it might be correct, but the Dafny verifier isn’t

“clever” enough to prove that the required properties hold.

▶ In the latter case, we need to give it some help. We’ll see an
example.

26 / 41

Proving loops correct

Loops pose a problem for Dafny.

When the verifier sees a method containing a loop, it doesn’t know
in advance how many times the loop will be executed. There are
potentially infinite paths through the program.

And to prove that the postconditions are true (assuming the
preconditions are), the verifier needs to consider all the possible
paths through a method.

27 / 41

Loop invariants

The solution is to make use of loop invariants.

These are expressions that hold true

▶ before entering the loop
▶ after every execution of the loop body

(but they may be false at various points in the middle of the loop
body).

28 / 41

Loop invariant example

Loop invariants are put just before the body of a loop:

var i := 0;

while i < n

invariant 0 <= i

{

i := i + 1;

}

29 / 41

Loop invariant example

var i := 0;

while i < n

invariant 0 <= i

{

i := i + 1;

}

The verifier reasons as follows:

▶ Is 0 <= i true before the loop starts?
▶ Yes, since i is 0, and 0 <= 0 is true.

▶ If the invariant was true at the start of the loop, will it also be true at the end of
the loop?
▶ Yes, it will.

If 0 <= i at the start of the loop, all we do in the body is increment i by 1;
so 0 <= i will still be true at the end of the loop.

▶ From this, Dafny concludes that if the invariant was true before entering the
loop, it will also be true after the loop (since there’s no place it could have been
made false)

30 / 41

Loop invariant applications
The example above is very simple, but we can work our way up to
more complex loops.

For instance, here is a loop that calculates m × n (though in any
modern programming language, we already have integer
multiplication):

// assume m and n are parameters, say

var tot := 0;

while m > 0

{

tot := tot + n;

m := m − 1;

}

Could we prove that, after the loop ends, tot = m × n? 31 / 41

Loop invariant applications

It makes things easier if, rather than altering m and n, we leave them
as is and copy their values into other variables. Let’s write this as a
method in Dafny.

(In fact, Dafny will not let us mutate parameters.)

method MyMethod(m : int, n : int) {

var tot := 0;

var a := m; var b := n;

while a > 0

{

tot := tot + b;

a := a − 1;

}

}

32 / 41

Loop invariant applications
Now we can write a postcondition in terms of m and n:

method MyMethod(m : int, n : int) returns (r: int)

ensures r == m * n

{

var tot := 0;

var a := m; var b := n;

while a > 0

{

tot := tot + b;

a := a − 1;

}

return tot;

}

This will fail, as Dafny cannot prove it is true.
33 / 41

Loop invariant applications

One thing that is always
true about the loop:
▶ tot is the “total so

far”
▶ If we add the bits

“still to go” (a * b)
to the total, we
should get m * n.

method MyMethod(m : int, n : int)

returns (r: int)

ensures r == m * n

{ // won't compile

var tot := 0;

var a := m; var b := n;

while a > 0

invariant a * b + tot == m * n

{

tot := tot + b;

a := a − 1;

}

assert tot == m * n;

return tot;

}

So an invariant is a * b + tot == m * n. 34 / 41

Loop invariant applications
That won’t compile, because we forgot to consider that m might be negative.
If it were, we’d end up with an endless loop.

So let’s make sure m and n are non-negative.

method MyMethod(m : int, n : int) returns (r: int)

requires m >= 0 && n >= 0

ensures r == m * n

{

var tot := 0;

var a := m; var b := n;

while a > 0

invariant a * b + tot == m * n

{

tot := tot + b;

a := a − 1;

}

assert tot == m * n;

return tot;

}
35 / 41

Loop invariant applications

method MyMethod(m : int, n : int) returns (r: int)

requires m >= 0 && n >= 0

ensures r == m * n

{

var tot := 0;

var a := m; var b := n;

while a > 0

invariant a * b + tot == m * n

{

tot := tot + b;

a := a − 1;

}

assert tot == m * n;

return tot;

}

Dafny will confirm that this method is correct – it understands enough basic arithmetic
to work out that the loop invariant holds before and after each loop iteration.

36 / 41

Loop invariant applications

// ...

while a > 0

invariant a * b + tot == m * n

{

tot := tot + b;

a := a − 1;

}

assert tot == m * n;

}

And if the loop invariant holds in those cases, it also holds after; and since a == 0 after
the loop,

→ a * b + tot == m * n

→ 0 * b + tot == m * n

→ 0 + tot == m * n

→ tot == m * n

37 / 41

Compilation

Once the program is verified, we
can compile it into various
formats.
The default format is a Windows
library, but we can also compile
to (say) Java or C++.

sample.dfy

method Main() {

var result := MyMethod(3, 5);

print "result ", result, "\n";

}

method MyMethod(m : int, n : int)

returns (r: int)

requires m >= 0 && n >= 0

ensures r == m * n

{ var tot := 0;

var a := m; var b := n;

while a > 0

invariant a * b + tot == m * n

{

tot := tot + b;

a := a − 1;

}

assert tot == m * n;

return tot;

}

38 / 41

Compilation

$ dafny /compileTarget:java sample.dfy

$ java −cp /opt/dafny/DafnyRuntime.jar:./sample−java sample

Picked up JAVA_TOOL_OPTIONS: −Xmx3435m

result 15

39 / 41

Power of specifications

Although these are only small examples, hopefully you can see that
this technique is quite powerful.

If we can prove that small portions of code are correct (i.e., meet
their specification), and we can chain them together, then we will
be able to prove correctness of large programs.

40 / 41

Example assertions

We can use postconditions, preconditions, assertions and invariants
to express:

▶ Bounds on elements of the data:

n ≥ 0

▶ Ordering properties of the data:

for all j : 0 ≤ j < n − 1 : aj ≤ aj+1

▶ “Finding the maximum”

e.g. Asserting that p is the position of the maximum element in
some array a[0..n − 1]

0 ≤ p < n ∨ (for all j : 0 ≤ j < n : aj ≤ ap)

41 / 41

