
CITS5501 Software Testing and Quality Assurance
Specification languages – Alloy

Unit coordinator: Arran Stewart

1 / 52

Overview

▶ Alloy specification language and Alloy analyser

2 / 52

Alloy idea

The idea behind Alloy is that:

▶ It lets you capture the essence of a design at a high level
▶ It lect you identify risky aspects of a design
▶ It lets you develop a model incrementally
▶ It lets you simulate and analyze the model as you go

3 / 52

Alloy idea

In other words, before you start implementing a system, you can
start specifying the entities that make it up, what constraints
(i.e. invariants) hold for them, and how they hang together.

4 / 52

What is Alloy?

▶ A flexible language for describing structures (and how they
interrelate)

▶ It can describe both
▶ static structures
▶ dynamic behaviours1

▶ Comes with a tool, the Alloy Analyzer
▶ Generates counterexamples to theorems/statements

1An Alloy extension, Electrum, exists which is well-suited for modelling
properties of systems over time using temporal logic. However, we will restrict
ourselves to very simple dynamic behaviours using plain Alloy.

5 / 52

What is Alloy?

▶ A flexible language for describing structures (and how they
interrelate)

▶ It can describe both
▶ static structures
▶ dynamic behaviours1

▶ Comes with a tool, the Alloy Analyzer
▶ Generates counterexamples to theorems/statements

1An Alloy extension, Electrum, exists which is well-suited for modelling
properties of systems over time using temporal logic. However, we will restrict
ourselves to very simple dynamic behaviours using plain Alloy.

5 / 52

Alloy advantages

▶ Small and easy to use
▶ Has a simple and uniform semantics based on mathematical

relations
▶ Can be easily analysed using automated tools

6 / 52

Comparison with UML

Alloy has some similarities with UML –

▶ It has a graphical notation
▶ It is somewhat similar to the Objects Constraint Language used

by UML2

And several differences:

▶ Unlike UML, Alloy has precise semantics
▶ It is a far smaller and simpler formalism than UML

▶ UML allows for many constructs (e.g. use cases, state charts)
that don’t have an equivalent in Alloy

2https://en.wikipedia.org/wiki/Object_Constraint_Language
7 / 52

Using Alloy

▶ The Alloy analyser is distributed as a Java .jar file (or a .dmg

file for Mac OS X) – see the Alloy 6.0 release page
▶ The .jar file can be run like this:

java −jar org.alloytools.alloy.dist.jar

8 / 52

https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0

Using Alloy

I have also set up a GitHub repository which lets you use the Alloy
analyser from within an online IDE using Gitpod –
visit https://github.com/arranstewart-dev/alloy-analyser-gitpod/

9 / 52

https://www.gitpod.io
https://github.com/arranstewart-dev/alloy-analyser-gitpod/

Using Alloy

Alloy analyser displaying a counterexample

10 / 52

Alloy – sigs

In Alloy, we declare rules about a mini-universe: things that exist,
and properties that should be true of them.

We declare things that exist with sigs (short for “signatures”):

▶ “There are things called animals”

sig Animal {}

▶ “A cat is a sort of animal”

sig Cat extends Animal {}

The two declarations above declare kinds of “things” that exist.

11 / 52

Alloy – facts and assertions

We can also write:

▶ facts: These force something to be true of our model. They
act as constraints on it. Alloy won’t generate any instances of
the model in which the facts don’t hold.
▶ A fact is part of our specification.

▶ assertions: An assertion claims something is true of our model
(but it could be wrong).
▶ You can think of these as similar to assertions in Dafny or in

other languages
▶ They’re like a debugging tool such as println – they let you ask

whether some fact is true or not.
▶ The assertion isn’t part of the specification; it’s something we

use to check what consequences flow from our specification.

12 / 52

Alloy

When modelling entities in Alloy – we normally include only the bare
minimum of properties needed in order to show how the system
“hangs together”.

13 / 52

Alloy language

▶ For example – we’ll look at a simple model of a file system (based on
the Alloy tutorial at http://alloytools.org/tutorials/online/)

▶ An Alloy specification looks a little like Java:

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

14 / 52

http://alloytools.org/tutorials/online/

Alloy primitives

▶ In Alloy, everything is built up from atoms and relations

▶ An atom in alloy is an indivisible, immutable value
▶ We don’t create these directly – they get automatically

generated by the analyser
▶ Example atoms: A0, A1, B0, R0 . . .

▶ A relation is a structure that relates atoms together –
▶ It is a set of tuples

15 / 52

Alloy primitives

The easiest way to think of relations is probably to think of them as
a sort of table – which show how columns of things are related.

e.g. “shares an office with”:

Person A Person B

Alice Bob
Bob Alice
Dan Eve
Eve Dan

Each row is called a tuple.

16 / 52

Alloy relations

In other languages, we might have scalar values (e.g. ints, doubles),
various types of containers (e.g. array, List), and ways of
combining types together into a class (or struct in C).

In Alloy, these are all subsumed under relations.

We will see that sets, scalars, properties and so on, are all defined in
terms of relations.

17 / 52

Alloy – relations

Alloy’s semantics are defined in terms of relations.

Example relations:

▶ “Is less than”. e.g. “2 < 4”, “10 < 9”.
▶ “Is the blood relative of”. e.g. “Alice is the blood relative of

Bob”.
▶ “Shares an office with”. e.g. “Bob shares an office with Carol”.

These are all binary relations. Statements about two entities, which
can be true or false.

18 / 52

Alloy – relations

Relations can also be unary (about one entity):

▶ “Is even”. e.g. “even(2).
▶ “Is an employee”. e.g. “Dan is an employee”.

19 / 52

Alloy – relations

They can be ternary:

▶ “_ is delivered to _, by _”. e.g. “The blue book was delivered
to Alice, by Bob”.

Or, in general, they can be n-ary – a statement about n things.

20 / 52

Alloy – relations

We can think of predicates as being a bit like functions – an n-ary
predicate isn’t true or false in itself, until we supply it with n
arguments.

▶ “Is less than” isn’t true or false, but “2 < 4” is.

21 / 52

Alloy – relations

Relations can be finite, or infinite.

An infinite relation: “is less than”

Number A Number B

1 2
1 3
2 3
.

22 / 52

Alloy relations

▶ Sets are unary (1-column) relations. e.g.

Name = { N0,

N1,

N2 }

▶ Scalars are actually 1-element sets:

myName = N0

▶ Binary or ternary or higher relations are possible:

names = { (B0, N0),

(B0, N1),

(B1, N2) }

23 / 52

Alloy – sigs

sig Animal {} says “There are things called animals”.

It defines a unary relation, “Animal”. Something thing can
be-an-animal, or not.

24 / 52

Alloy – sigs

sig Cat extends Animal {} says “Cats are a sort of animal”.

If something has the property “is-an-animal”, then it might also
have the property “is-a-cat”.

We can read “extends” as also meaning “is a kind of”, or “is a
subtype of”.

25 / 52

Alloy – subtypes

▶ So, extends indicates subtypes (similar to Java).
▶ Here, Dir and File are both subtypes of FSObject:

sig FSObject {}

sig Dir extends FSObject {}

sig File extends FSObject {}

▶ When we declare Dir or a File to be sub-types of FSObject, they are
considered to be mutually disjoint sets

▶ The above says “There are things called FSObjects. An FSObject might be
a Dir or it might be a File, but not both”.

26 / 52

Alloy – properties

We can specify properties of entities:

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

27 / 52

Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

These are usually written within the sig of an entity.

They actually represent relations between entities.

28 / 52

Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

There are multiple ways of reading this:

▶ “There are such things as FSObjects. An FSObject has the
property ‘parent’. An FSObject can have zero or one parents.”
Or –

▶ “A relation ‘parent’ exists between FSObjects and Dirs.
Whenever an FSObject appears in the relation, it can be
association with at most one Dir.”

These are exactly equivalent.

29 / 52

Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

▶ The “lone” means “zero or one”. It is a cardinality.

▶ Other possible cardinalities are:
▶ “some” (one or more)
▶ “one” (exactly one)
▶ “set” (zero or more)

▶ When we specify a property using a colon in this way, the
default multiplicity is one.

▶ We can use cardinalities whenever we are specifying a set or
relation: since sigs also represent sets (e.g. the set of Dirs), we
can give them cardinalities, too. 30 / 52

Alloy – properties

one sig RootDir extends Dir { }

There exists a “RootDir”, but only one of them.

31 / 52

Exercise

Games:

▶ There are things called games.
▶ Games can be board games, or field games.
▶ There may be other sorts of games.

32 / 52

Alloy language – comments

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ Comments can be written in multiple ways

▶ single-line comments with “//” or “--”
▶ multile comments with “/* ... */”

33 / 52

Alloy language – comments

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ Comments can be written in multiple ways
▶ single-line comments with “//” or “--”

▶ multile comments with “/* ... */”

33 / 52

Alloy language – comments

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ Comments can be written in multiple ways
▶ single-line comments with “//” or “--”
▶ multile comments with “/* ... */”

33 / 52

Alloy – facts

▶ How can we express that any FSObject is either a Dir or a File?
(i.e., there are no other sorts of FSObject)

▶ Alloy also allows us to specify constraints. These are introduced with the
keyword fact.

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }

34 / 52

Alloy – facts

▶ How can we express that any FSObject is either a Dir or a File?
(i.e., there are no other sorts of FSObject)

▶ Alloy also allows us to specify constraints. These are introduced with the
keyword fact.

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }

34 / 52

Alloy – facts

▶ How can we express that any FSObject is either a Dir or a File?
(i.e., there are no other sorts of FSObject)

▶ Alloy also allows us to specify constraints. These are introduced with the
keyword fact.

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }

34 / 52

Alloy – facts

▶ The general syntax for a fact is

fact name { formulas }

▶ formulas are Boolean expressions, and by putting them in a
fact, we’re constraining them to be true.

35 / 52

Alloy – abstract signatures

▶ An alternative way to say that all FSObjects must be Dirs or
Files would be to declare FSObject abstract

▶ This is similar to the use of the abstract keyword in Java;
it means there are no objects that are directly of type
FSObject; they must be members of some subtype, instead.

36 / 52

Alloy – abstract signatures

▶ An alternative way to say that all FSObjects must be Dirs or
Files would be to declare FSObject abstract

▶ This is similar to the use of the abstract keyword in Java;
it means there are no objects that are directly of type
FSObject; they must be members of some subtype, instead.

36 / 52

Alloy – operators

Operators are available to construct Boolean expressions.

▶ subset: in
▶ set1 in set2 — set1 is a subset of set2
▶ informally: “some set2 are set1”, or “a set2 may be set1”;

but the set-theoretic meaning is more precise.
▶ set equality: =

▶ set1 = set2 — set1 equals set2

▶ scalar equality: =
▶ scalar = value — scalar equals value

37 / 52

Alloy – subsets

▶ We saw that subtypes are disjoint.

▶ We can also declare subsets:

sig signame in supername { ... }

▶ Subsets are not necessarilly disjoint, and may have multiple
parents

38 / 52

Alloy – subsets

sig Animal {}

sig Cat extends Animal {}

sig Dog extends Animal {}

sig FurryPet in Cat + Dog {}

▶ “FurryPet” is a subset of the union of Cat and Dog.
▶ Some dogs and cats may not be furry (hairless breeds).
▶ We could make them all furry as follows:

fact { Cat + Dog = FurryPet }

▶ Are there animals other than cats and dogs?
Can they be furry?

39 / 52

More operators

▶ We can use Boolean connectives and, or, implies, iff, not to join
Boolean expressions.

▶ e.g.

fact { A + B = C and X + Y = Z }

40 / 52

Relations

▶ In our file-system example, we also saw things in the body of
signatures (i.e., between the braces).

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

41 / 52

Relations

▶ In our file-system example, we also saw things in the body of
signatures (i.e., between the braces).

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

41 / 52

Relations

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ To a first approximation, we can think of relations as behaving like
fields in an OO language.

▶ sig FSObject { parent: lone Dir } can be read as
“Things of type FSObject have a parent, which is of type Dir”.

▶ Recall that lone means “at most one” – i.e., you can have zero or
one parents.
(We need this because the root directory has no parent.) 42 / 52

Relations

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ More precisely, parent is a relation between FSObject and Dir.

43 / 52

Relations – multiplicities

▶ lone is a type of multiplicity – it says how many of something
there are.

▶ Other multiplicities:
▶ one - one
▶ some - at least one; one or more
▶ set - zero or more
▶ no - zero

▶ The default multiplicity is one.

44 / 52

Relations – multiplicities

▶ In set theory terms . . .
▶ one means the relation is a total function –

sig Student { name : one String } –
for every Student, we can map to a string which is their name.

▶ lone means the relation is a partial function –
sig Student { driverLicenseNum : lone String } – \ for every
Student, we may be able to map to a diver’s license number.
(Here, it’s assumed you can’t have more than one license.)

45 / 52

Relations

▶ So, signature declarations will look like:

sig SomeName {

field1 : FieldType,

field2a, field2b : OtherFieldType

}

▶ The order of declarations doesn’t matter – SomeName, FieldType and
OtherFieldType could be declared in any order in a file.

46 / 52

Relations

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

▶ Here, we say that a Dir has a field contents, which is a set of
FSObjects.

▶ The could contain one item, many items, or no items.

47 / 52

Examples

▶ “A car has one engine”
sig Car { engine: one Engine }, or
sig Car { engine: Engine }

▶ “People have zero or more hobbies”
sig Person { hobbies: set Activity }

48 / 52

Exercises

▶ Classes have at least one lecturer, and zero or more students.

▶ Animals have zero or more legs
▶ Some animals are carnivores
▶ Textbooks have one or more pages

49 / 52

Exercises

▶ Classes have at least one lecturer, and zero or more students.
▶ Animals have zero or more legs

▶ Some animals are carnivores
▶ Textbooks have one or more pages

49 / 52

Exercises

▶ Classes have at least one lecturer, and zero or more students.
▶ Animals have zero or more legs
▶ Some animals are carnivores

▶ Textbooks have one or more pages

49 / 52

Exercises

▶ Classes have at least one lecturer, and zero or more students.
▶ Animals have zero or more legs
▶ Some animals are carnivores
▶ Textbooks have one or more pages

49 / 52

Back to the file system example

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// There exists a root

one sig Root extends Dir { } { no parent }

▶ FSObjects have parents, and directories have contents, and we
have constrained the multiplicities . . .

▶ but there’s currently no connection between them.

50 / 52

File system

▶ So we could have this situation:

51 / 52

File system

▶ We will need to constrain things more, so we’ll use a fact.

// A directory is the parent of its contents

fact { all d: Dir, o: d.contents | o.parent = d }

▶ This says: “for any thing (let’s call it d for the moment) of type Dir,
and for any thing (let’s call it o for the moment) which is in the set
d.contents:
o’s parent is d.

▶ It uses a quantifier (“all”) – we’ll look at these more later.

52 / 52

