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Overview

▶ Alloy specification language and Alloy analyser
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Alloy idea

The idea behind Alloy is that:

▶ It lets you capture the essence of a design at a high level
▶ It lect you identify risky aspects of a design
▶ It lets you develop a model incrementally
▶ It lets you simulate and analyze the model as you go
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Alloy idea

In other words, before you start implementing a system, you can
start specifying the entities that make it up, what constraints
(i.e. invariants) hold for them, and how they hang together.
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What is Alloy?

▶ A flexible language for describing structures (and how they
interrelate)

▶ It can describe both
▶ static structures
▶ dynamic behaviours1

▶ Comes with a tool, the Alloy Analyzer
▶ Generates counterexamples to theorems/statements

1An Alloy extension, Electrum, exists which is well-suited for modelling
properties of systems over time using temporal logic. However, we will restrict
ourselves to very simple dynamic behaviours using plain Alloy.
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Alloy advantages

▶ Small and easy to use
▶ Has a simple and uniform semantics based on mathematical

relations
▶ Can be easily analysed using automated tools
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Comparison with UML

Alloy has some similarities with UML –

▶ It has a graphical notation
▶ It is somewhat similar to the Objects Constraint Language used

by UML2

And several differences:

▶ Unlike UML, Alloy has precise semantics
▶ It is a far smaller and simpler formalism than UML

▶ UML allows for many constructs (e.g. use cases, state charts)
that don’t have an equivalent in Alloy

2https://en.wikipedia.org/wiki/Object_Constraint_Language
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Using Alloy

▶ The Alloy analyser is distributed as a Java .jar file (or a .dmg

file for Mac OS X) – see the Alloy 6.0 release page
▶ The .jar file can be run like this:

java −jar org.alloytools.alloy.dist.jar
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Using Alloy

I have also set up a GitHub repository which lets you use the Alloy
analyser from within an online IDE using Gitpod –
visit https://github.com/arranstewart-dev/alloy-analyser-gitpod/
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Using Alloy

Alloy analyser displaying a counterexample
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Alloy – sigs

In Alloy, we declare rules about a mini-universe: things that exist,
and properties that should be true of them.

We declare things that exist with sigs (short for “signatures”):

▶ “There are things called animals”

sig Animal {}

▶ “A cat is a sort of animal”

sig Cat extends Animal {}

The two declarations above declare kinds of “things” that exist.
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Alloy – facts and assertions

We can also write:

▶ facts: These force something to be true of our model. They
act as constraints on it. Alloy won’t generate any instances of
the model in which the facts don’t hold.
▶ A fact is part of our specification.

▶ assertions: An assertion claims something is true of our model
(but it could be wrong).
▶ You can think of these as similar to assertions in Dafny or in

other languages
▶ They’re like a debugging tool such as println – they let you ask

whether some fact is true or not.
▶ The assertion isn’t part of the specification; it’s something we

use to check what consequences flow from our specification.
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Alloy

When modelling entities in Alloy – we normally include only the bare
minimum of properties needed in order to show how the system
“hangs together”.
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Alloy language

▶ For example – we’ll look at a simple model of a file system (based on
the Alloy tutorial at http://alloytools.org/tutorials/online/)

▶ An Alloy specification looks a little like Java:

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }
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Alloy primitives

▶ In Alloy, everything is built up from atoms and relations

▶ An atom in alloy is an indivisible, immutable value
▶ We don’t create these directly – they get automatically

generated by the analyser
▶ Example atoms: A0, A1, B0, R0 . . .

▶ A relation is a structure that relates atoms together –
▶ It is a set of tuples
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Alloy primitives

The easiest way to think of relations is probably to think of them as
a sort of table – which show how columns of things are related.

e.g. “shares an office with”:

Person A Person B

Alice Bob
Bob Alice
Dan Eve
Eve Dan

Each row is called a tuple.
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Alloy relations

In other languages, we might have scalar values (e.g. ints, doubles),
various types of containers (e.g. array, List), and ways of
combining types together into a class (or struct in C).

In Alloy, these are all subsumed under relations.

We will see that sets, scalars, properties and so on, are all defined in
terms of relations.
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Alloy – relations

Alloy’s semantics are defined in terms of relations.

Example relations:

▶ “Is less than”. e.g. “2 < 4”, “10 < 9”.
▶ “Is the blood relative of”. e.g. “Alice is the blood relative of

Bob”.
▶ “Shares an office with”. e.g. “Bob shares an office with Carol”.

These are all binary relations. Statements about two entities, which
can be true or false.
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Alloy – relations

Relations can also be unary (about one entity):

▶ “Is even”. e.g. “even(2).
▶ “Is an employee”. e.g. “Dan is an employee”.
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Alloy – relations

They can be ternary:

▶ “_ is delivered to _, by _”. e.g. “The blue book was delivered
to Alice, by Bob”.

Or, in general, they can be n-ary – a statement about n things.
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Alloy – relations

We can think of predicates as being a bit like functions – an n-ary
predicate isn’t true or false in itself, until we supply it with n
arguments.

▶ “Is less than” isn’t true or false, but “2 < 4” is.
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Alloy – relations

Relations can be finite, or infinite.

An infinite relation: “is less than”

Number A Number B

1 2
1 3
2 3
. . . . . .
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Alloy relations

▶ Sets are unary (1-column) relations. e.g.

Name = { N0,

N1,

N2 }

▶ Scalars are actually 1-element sets:

myName = N0

▶ Binary or ternary or higher relations are possible:

names = { (B0, N0),

(B0, N1),

(B1, N2) }
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Alloy – sigs

sig Animal {} says “There are things called animals”.

It defines a unary relation, “Animal”. Something thing can
be-an-animal, or not.
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Alloy – sigs

sig Cat extends Animal {} says “Cats are a sort of animal”.

If something has the property “is-an-animal”, then it might also
have the property “is-a-cat”.

We can read “extends” as also meaning “is a kind of”, or “is a
subtype of”.
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Alloy – subtypes

▶ So, extends indicates subtypes (similar to Java).
▶ Here, Dir and File are both subtypes of FSObject:

sig FSObject {}

sig Dir extends FSObject {}

sig File extends FSObject {}

▶ When we declare Dir or a File to be sub-types of FSObject, they are
considered to be mutually disjoint sets

▶ The above says “There are things called FSObjects. An FSObject might be
a Dir or it might be a File, but not both”.
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Alloy – properties

We can specify properties of entities:

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }
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Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

These are usually written within the sig of an entity.

They actually represent relations between entities.
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Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

There are multiple ways of reading this:

▶ “There are such things as FSObjects. An FSObject has the
property ‘parent’. An FSObject can have zero or one parents.”
Or –

▶ “A relation ‘parent’ exists between FSObjects and Dirs.
Whenever an FSObject appears in the relation, it can be
association with at most one Dir.”

These are exactly equivalent.
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Alloy – properties

// A file system object in the file system

sig FSObject { parent: lone Dir }

▶ The “lone” means “zero or one”. It is a cardinality.

▶ Other possible cardinalities are:
▶ “some” (one or more)
▶ “one” (exactly one)
▶ “set” (zero or more)

▶ When we specify a property using a colon in this way, the
default multiplicity is one.

▶ We can use cardinalities whenever we are specifying a set or
relation: since sigs also represent sets (e.g. the set of Dirs), we
can give them cardinalities, too. 30 / 52



Alloy – properties

one sig RootDir extends Dir { }

There exists a “RootDir”, but only one of them.

31 / 52



Exercise

Games:

▶ There are things called games.
▶ Games can be board games, or field games.
▶ There may be other sorts of games.
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Alloy language – comments

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ Comments can be written in multiple ways

▶ single-line comments with “//” or “--”
▶ multile comments with “/* ... */”
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Alloy – facts

▶ How can we express that any FSObject is either a Dir or a File?
(i.e., there are no other sorts of FSObject)

▶ Alloy also allows us to specify constraints. These are introduced with the
keyword fact.

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }
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Alloy – facts

▶ The general syntax for a fact is

fact name { formulas }

▶ formulas are Boolean expressions, and by putting them in a
fact, we’re constraining them to be true.
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Alloy – abstract signatures

▶ An alternative way to say that all FSObjects must be Dirs or
Files would be to declare FSObject abstract

▶ This is similar to the use of the abstract keyword in Java;
it means there are no objects that are directly of type
FSObject; they must be members of some subtype, instead.
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Alloy – operators

Operators are available to construct Boolean expressions.

▶ subset: in
▶ set1 in set2 — set1 is a subset of set2
▶ informally: “some set2 are set1”, or “a set2 may be set1”;

but the set-theoretic meaning is more precise.
▶ set equality: =

▶ set1 = set2 — set1 equals set2

▶ scalar equality: =
▶ scalar = value — scalar equals value
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Alloy – subsets

▶ We saw that subtypes are disjoint.

▶ We can also declare subsets:

sig signame in supername { ... }

▶ Subsets are not necessarilly disjoint, and may have multiple
parents
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Alloy – subsets

sig Animal {}

sig Cat extends Animal {}

sig Dog extends Animal {}

sig FurryPet in Cat + Dog {}

▶ “FurryPet” is a subset of the union of Cat and Dog.
▶ Some dogs and cats may not be furry (hairless breeds).
▶ We could make them all furry as follows:

fact { Cat + Dog = FurryPet }

▶ Are there animals other than cats and dogs?
Can they be furry?
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More operators

▶ We can use Boolean connectives and, or, implies, iff, not to join
Boolean expressions.

▶ e.g.

fact { A + B = C and X + Y = Z }
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Relations

▶ In our file-system example, we also saw things in the body of
signatures (i.e., between the braces).

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }
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Relations

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ To a first approximation, we can think of relations as behaving like
fields in an OO language.

▶ sig FSObject { parent: lone Dir } can be read as
“Things of type FSObject have a parent, which is of type Dir”.

▶ Recall that lone means “at most one” – i.e., you can have zero or
one parents.
(We need this because the root directory has no parent.) 42 / 52



Relations

// A file system object in the file system

sig FSObject { parent: lone Dir }

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

// A file in the file system

sig File extends FSObject { }

▶ More precisely, parent is a relation between FSObject and Dir.
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Relations – multiplicities

▶ lone is a type of multiplicity – it says how many of something
there are.

▶ Other multiplicities:
▶ one - one
▶ some - at least one; one or more
▶ set - zero or more
▶ no - zero

▶ The default multiplicity is one.
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Relations – multiplicities

▶ In set theory terms . . .
▶ one means the relation is a total function –

sig Student { name : one String } –
for every Student, we can map to a string which is their name.

▶ lone means the relation is a partial function –
sig Student { driverLicenseNum : lone String } – \ for every
Student, we may be able to map to a diver’s license number.
(Here, it’s assumed you can’t have more than one license.)
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Relations

▶ So, signature declarations will look like:

sig SomeName {

field1 : FieldType,

field2a, field2b : OtherFieldType

}

▶ The order of declarations doesn’t matter – SomeName, FieldType and
OtherFieldType could be declared in any order in a file.
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Relations

// A directory in the file system

sig Dir extends FSObject { contents: set FSObject }

▶ Here, we say that a Dir has a field contents, which is a set of
FSObjects.

▶ The could contain one item, many items, or no items.
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Examples

▶ “A car has one engine”
sig Car { engine: one Engine }, or
sig Car { engine: Engine }

▶ “People have zero or more hobbies”
sig Person { hobbies: set Activity }
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Exercises

▶ Classes have at least one lecturer, and zero or more students.

▶ Animals have zero or more legs
▶ Some animals are carnivores
▶ Textbooks have one or more pages
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Back to the file system example

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// There exists a root

one sig Root extends Dir { } { no parent }

▶ FSObjects have parents, and directories have contents, and we
have constrained the multiplicities . . .

▶ but there’s currently no connection between them.
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File system

▶ So we could have this situation:
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File system

▶ We will need to constrain things more, so we’ll use a fact.

// A directory is the parent of its contents

fact { all d: Dir, o: d.contents | o.parent = d }

▶ This says: “for any thing (let’s call it d for the moment) of type Dir,
and for any thing (let’s call it o for the moment) which is in the set
d.contents:
o’s parent is d.

▶ It uses a quantifier (“all”) – we’ll look at these more later.
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